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NOTATION 

Distance between vertical stiffeners or 
panel length 

Amplitude of total initial deflection at 
the center of plate 

Cross sectional areas of upper and lower 
flanges, respectively 

Cross sectional areas of left and right 
stiffeners, respectively 

Distance between flanges or panel depth 

Half width of the compression flange 

Widths of the upper and lower flanges, 
respectively 

Flexural rigidity of plate 

Modulus of elasticity of steel 

Functions of w where k = 1,2,3 

Functions of w^^^ where k = 1,2,3 

Thickness of webplate 

(k) 
Functions of w where k = 1,2,3 

Flexural rigidities in y-direction of 
upper and lower flanges, respectively 

Torsional rigidities of upper and 
lower flanges, respectively 

Torsional rigidities of left and right 
stiffeners, respectively 

Lateral buckling length 

Bending moment 
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N Dimension of the mesh point system 

P Load 

Buckling load 

Ultimate load 

S Shearing force on a beam 

tf,ti Thicknesses of upper and lower flanges 
respectively 

u^ Displacement vector component 

u,v,w Displacement components in x-, y-
and z-directions, respectively 

u  v , w k - t h  o r d e r  d i s p l a c e m e n t  c o m p o n e n t s  i n  x - ,  
y- and z-directions, respectively 

~ (k) ̂ ~ (k) ̂ ~ (k) Nondimensionalizec, k-th order displacement 
components in x-, y- and z-directions, 
respectively 

T T T 
u ,v ,w Total displacement components in x-, y-

and z-directions, respectively 

0-th order elastic deflection 

w Total initial deflection 
o 

w Nondimensionalized total initial deflection 
o 

T 
w Total deflection 

T 
w Total elastic deflection 
e 

X, y, z Coordinates 

a o^/E 

6, B' a/h and b/h respectively (slenderness ratios 
of webplate) 
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gg Slenderness ratio of compression flange 

3 Critical slenderness ratio of plate for 
vertical buckling of flange 

A Nondimensionalized load 

L T 
A , A Nondimensionalized lateral and torsional 
cr ' cr 

buckling loads , respectively 

A^cr Nondimensionalized plate buckling load 

A^ Nondimensionalized ultimate load 

Strain tensor component 

E , E , E Strain tensor components in the plane of 
X ' y ' xy 

plate 

^bx'^by'^bxy Bending strain components 

0 AM/(aS) 

Kgf K' Nondimensionalized flexural rigidities of 
upper and lower flanges, respectively 

X Aspect ratio of panel (b/a) 

U Nondimensionalized amplitude of total 
initial deflection (A/h) 

V Poisson's ratio of steel 

n Nondimensionalized coordinates 

a ,0 ,T In-plane stress components 
X y xy ^ 

k-th order in-plane stress components 

d Nondimensionalized k-th order in-plane 
^ stress components 
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—T —T —T 
^x' ' ''xy Total in-plane stress components 

a , o Initial stress components 
xo yo xyo ^ 

a  , 0 ^ , 0  N o n d i m e n s i o n a l i z e d  i n i t i a l  s t r e s s  
xo yo xyo components 

^bx' °by' ̂ bxy Bending stress components 

^bxo'^byo'^bxyo Initial bending stress components 

Of, o^ Stresses in upper and lower flanges, 
respectively 

Of, G^ Nondimensionalized stresses in upper and 
lower flanges, respectively 

a a at X = a/2 and y = 0 
o yo ' ^ 

Og, a' Stresses in left and right stiffeners, 
^ respectively 

Og, o' Nondimensionalized stresses in left and 
right stiffeners, respectively 

Oyf/ Tensile strengths of upper and lower 
flanges, respectively 

Tensile strength of webplate 

T Average external edge shearing stress 

<}>£, <t>^ Nondimensionalized cross sectional areas 
of upper and lower flanges, respectively 

(j) , 4) ' Nondimensionalized cross sectional areas 
s ' "^s 

of left and right stiffeners, respectively 

tpg Nondimensionalized torsional rigidities of 
upper and lower flanges, respectively 
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Nondimensionalized torsional rigidities 
of left and right stiffeners, respectively 

2 TT/(N-1) 
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CHAPTER ONE: INTRODUCTION 

Purpose of Study 

The frequent use of steel in bridges, buildings, ships 

and aircraft makes it necessary to consider instability problems 

in these structures. With recent increase in the use of high 

strength steel , the instability problems are becoming even more 

important in the design of steel structures. It is true that 

structures made of high strength steel can be designed so that 

their weights are reduced compared with those made of ordinary 

carbon steel. However, the structures made of high strength 

steel tend to be more flexible and less stable because of 

reduction in cross sectional areas with the modulus of 

elasticity remaining the same. 

One of the most important and interesting problems of this 

kind is found in the design of webplates in steel plate girders. 

Since the end of the 19th century, many attempts have been made 

to design webplates of steel girders considering their buckling 

stresses based on the small deflection theory of plates. It has 

been a well-known fact, however, that buckling stress of web­

plate has little bearing on the true load carrying capacity of 

webplate. Furthermore, buckling of webplate seldom occurs 

because of the existence of initial deflection in the webplate. 

This gives rise to the following question; "If the buckling of 

the webplate is not important, is it possible to design a 
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really flexible webplate without having instability problems?" 

Currently, it is believed that even a very flexible webplate 

can carry a considerable load if the girder is well designed. 

For this reason, the specifications for the design of web-

plates are being subjected to reconsideration in various 

countries. 

The purpose of this study is to investigate the signifi­

cance of plate buckling on the behavior of plate girders and 

the behavior of girder panels beyond their buckling loads. 

Specific points of interest in this study are: 

1. Effect of initial stresses due to some causes such as 

welding, 

2. Effect of initial deflections due to some causes such 

as welding, 

3. Effect of rigidities of the boundary members such as 

flanges and stiffeners, 

4. Load carrying capacity of webplate in pure shear 

condition, 

5. Load carrying capacity of webplate in pure bending 

condition, 

6. Load carrying capacity of webplate in combined shear 

and bending condition, 

7. Effect of yield strength of steel, 

A method of analysis based on the large deflection theory 

of plates is proposed for the purpose of this study. It is 
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noted that several attempts were made to analyze webplates 

with simple boundary conditions in the past. In the proposed 

analysis, plate girder panels are considered as elastic systems 

consisting of webplates and their surrounding members. The 

boundary conditions, therefore, include various interactions 

between the webplates and their surrounding members. It is 

necessary to establish, first, how well the proposed analysis 

predicts the behavior of the panels and secondly, how it may 

be used to predict the ultimate loads of panels. Elasto-

plastic analysis of the webplates is beyond the scope of the 

proposed analysis; however, it is important to know under what 

load yielding initiates in the panel. 

The large deflection theory of plates is a nonlinear 

theory and its mathematical natures are not yet completely 

known. Two major problems exist in the proposed analysis: 

(1) how to linearize the nonlinear partial differential 

equations, and (2) how to meet complex boundary conditions 

imposed on the panels. For the first problem, a method similar 

to perturbation method is applied. For the second problem, 

the finite difference method is used since analytical solution 

is extremely difficult. 

Definition of a Plate Girder 

A plate girder can be defined as a deep flexural member 

consisting of webplate, flanges (with or without cover plates) 
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and stiffeners. The girder elements such as webplate, flange 

plates, cover plates and stiffeners are connected to each 

other by means of welding, riveting or bolting. Plate girders 

are frequently used in bridges and large span buildings when­

ever and wherever the cross sections are considered to be 

economical. Unlike rolled beams, the design of plate girders 

requires special considerations on the problems of instability. 

Figure 1 shows some typical plate girders for highway bridges, 

and Figure 2 shows some possible cross sections for plate 

girders. 

Summary of Previous Work 

It is amazing to note that the first instability problem 

was formulated both theoretically and experimentally by Euler 

about two centuries ago when structures were mainly made of 

stones, bricks and wood. Euler's concept slept and was not 

brought into practice for a long time until steel began to be 

used for buildings and bridges. Euler investigated the 

instability problem of columns subjected to axial compressive 

load. Since the end of the 19th century, great efforts were 

made by many investigators to solve the buckling problems of 

flexible structures mainly made of steel. The concept used 

for column buckling was also applied to plate buckling problems 

and plate buckling was believed to govern the load carrying 

capacity of webplates of steel plate girders. Later, through 
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(a) Straight plate girder with 
vertical stiffeners 

(b) Haunched plate girder with 
vertical stiffeners 

(c) Straight plate girder with 
vertical and horizontal 
stiffeners 

Figure 1. Typical plate girders used for highway bridges 
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Q 

(a) (b) (c) (d) 

V 

(e) (f) (g) 

Figure 2. Possible cross sections for plate girders 
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practices and experiments, the phenomenon of plate buckling 

proved to be significantly different from that of column 

buckling, and the existence of postbuckling strength in plates 

became gradually recognized. 

In order to have the mathematical explanation of the post-

buckling behavior of webplates, von Karman first formulated the 

large deflection theory of plates (15) and later introduced 

the concept of effective width for plate in compression (16). 

After von Karman, many investigators solved the post-buckling 

problems mathematically using Fourier series or using energy 

approach (11, 25, 29, 30, 31). Alexeev (1) made use of a 

successive approximation method in solving the nonlinear 

equations of large deflection theory of plates. 

Easier and others (2, 3, 4, 5, 13) performed an extensive 

investigation on welded plate girders experimentally and 

established the concepts of load carrying capacity of steel 

girders subjected to bending, shear, or both combined. The 

analysis they proposed and used is not highly theoretical. 

Yet it is quite simple and accurate in the prediction of load 

carrying capacities so that fairly good design can be expected 

from the design formulas they derived. In a panel subjected to 

bending moment, some portion of the webplate in compression 

zone is assumed to offer no resistance to the bending because 

of the buckling of the webplate. On the other hand, in a panel 

subjected to shearing forces, a diagonal tension field is 
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assumed in such a way that the flanges do not provide the 

anchor for the tension field. Their method is a limit analysis 

method since a failure mode is assumed in computing ultimate 

load. The only drawback of this method is that it cannot 

provide the behavioral informations of girder panels through­

out its loading stage. 

Cooper and others (10) investigated the load carrying 

capacity of welded constructional alloy steel plate girders. 

The emphasis was placed on the effects of high strength steel 

and the effects of residual stress in girder panels. 

Massonnet and others (19, 20) investigated experimentally 

the effect of stiffeners intensively and established the 

minimum rigidity required for stiffeners to maintain girder 

panels in stable conditions. 

Rockey, Cook and Leggett (7, 8, 9, 24) investigated 

experimentally the buckling loads of panels with horizontal 

stiffeners and the optimum rigidity for the stiffeners to keep 

the panels stable. 

Mkaloud and Donea (25) investigated the effect of the 

residual stress on the post-buckling behavior of webplates. 

The large deflection theory of plates was used in the analysis. 

The effect of the initial deflection and the minimum require­

ment for the flange rigidity in the post-buckling range of 

webplate were also studied. 

A method quite similar to perturbation method was used by 

Stein (26, 27) to investigate the post-buckling behavior of 
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simply supported rectangular plates subjected to longitudinal 

compression and subjected to a uniform temperature rise. The 

basis of his approach is the expansion of unknown displacement 

components into a power series in terms of an arbitrary 

parameter. This expansion enables the conversion of the non­

linear large deflection equations of von Karman into a set of 

linear equations. Stein states that the method of solution he 

used is similar to a perturbation method and that in a true 

perturbation method, consideration is restricted to solutions 

which involve only small values of the arbitrary parameter. 

Furthermore, he explains that the smallness of the arbitrary 

parameter is not required in his analysis since the coeffi­

cients of the higher powers are small. Mansfield made use of a 

method similar to Stein's to analyze the post-buckling behavior 

of a compressed square plate (17, 18). 
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CHAPTER TWO; PROPOSED THEORETICAL ANALYSIS 

Basic Assumptions for the Analysis 

Figure 3 shows a panel of steel plate girder surrounded 

by two flanges and two vertical stiffeners and subjected to a 

combination of bending moment, M, and shear. The shearing 

stress, T, is assumed to be constant over the cross sectional 

area of webplate. 

The girder panel system is assumed to be linearly elastic 

until yielding occurs. The initiation of yielding is predicted 

by von Mises yield criterion. 

The analysis requires solution of displacement components 

u, V and w in x-, y- and z-directions, respectively. For 

convenience, the rigid body motion displacement components 

should be eliminated from the system. Thus, the degree of 

freedom of the system is six, of which three refer to the 

displacement components u and v; while the other three refer 

to bhe displacement components, w. For convenience, it is 

assumed that displacement components u vanish at corner points 

(0,0) and (0,b) (See coordinates shown in Figure 3), and the 

displacement component v vanishes at corner point (0,0). On 

the other hand, displacement component w is assumed to vanish 

at any three of four corner points. 

The flexural rigidities of the boundary members are quite 

large compared with the flexural rigidity of the plate so that 



www.manaraa.com

11 

y 

upper flange 

M + dM webplate 

lower flange 

left stiffener h right stiffenerl 

Figure 3. Steel plate girder panel 
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the curvatures of displacement component w are assumed to be 

negligible along the boundaries. Hence, combining with the 

assumptions mentioned above, the displacement component w 

vanishes along the boundary members. Similarly, the flexural 

rigidities of boundary members consisting of a stiffener and 

the adjacent panel are quite large so that the curvature 

associated with displacement u in y-direction can be assumed 

to be negligible. Combining with the assumptions previously 

made, the displacement component u is assumed to vanish along 

the edge x = 0. 

Based on the above-mentioned assumptions, the girder 

panel shown in Figure 3 can be represented by the mechanical 

model shown in Figure 4. Analytical description of boundary 

and loading conditions associated with this model is given in 

a later section. 

Basic Relations 

The purpose of this section is to define certain relation­

ships among stresses, strains, and displacements, which are 

used in the development of the proposed analysis. 

Stresses 

The stresses can be divided into in-plane stresses and 

bending stresses. 

In-plane stresses The in-plane stresses can be 

further divided into two: the initial stresses and the 

stresses due to loading. Let the initial in-plane stresses 
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y 

Figure 4. Simplified mechanical model of webplate panel 
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be designated as follows: 

a , o , T 
xo yo xyo 

Let the in-plane stresses due to loading be designated as 

follows: 

^x' ^xy 

—T —T —T 
Then, the total in-plane stresses and are: 

- V " 

—T — 
T = T + T 
xy xyo xy 

The sign convention for these stresses is shown in Figure 5. 

Bending stresses Similarly, the initial bending 

stresses are designated by: 

^bxo' ^byo' ^bxyo ' 

and the bending stresses caused by the loading are designated 

by; 

^bx' ^by' ^bxy 
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o 
3o 

+ -3^ dy 

i 
8% 

xy 3y 
dy 

X 

xy 

xy 

dx 

Figure 5. Sign convention for stresses 
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Stress-strain relationship 

According to the Hooke's law, the in-plane stress-strain 

relationship is given by the following equation in matrix form: 

a > 
y 

T 
\ xy 

V 

= E 

1-V l-V 

V 

0 s, ^ e N, 
X 

l-v2 1-V' 

0 0 
2(1+v) N y xy 

( 2 )  

Similarly, in bending 

"°bx ^ 
1 V 

•< o by 
X = E 

' bxy ̂  

l_v2 l_v' 

V 1 

1-v^ 1-v^ 

0 0 
2(1+v) 

'bx 

'by 

Y x bxy/ 

(3) 

where e , e and Y refer to in-plane strains, and e, , . e, „ 
x y ' xy bx by 

and refer to bending strains, both due to loading. 

Displacement vector components 

The displacement can be expressed by a vector which has 

three components u, v and w in x-, y- and z-directions. 
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respectively. In general, initial (or residual) deflection 

exists in a webplate due to welding process. Let this initial 

deflection be designated by w^. Then, the total deflection 

T 
w is given as follows: 

w = w + w (4) 

The initial displacement components in the plane of the plate 

Therefore, the total dis­

placement can be expressed by the following equation: 

u_ and V are assumed to be zero 
o o 

X v^ . 

w 
o
 

\
 

' u " 

0 4" V (5) 

/
 

Strain-displacement relationship 

Again, there are two different strain-displacement 

relationships: one for in-plane and the other for bending. 

In-plane strain-displacement relationship The 

etching of the neutral plane corresponding to the non-linear 

pot ion of the strains is also considered. Using Lagrange's 

displacement-strain tensor concept, the relationship is 

symbolically written as follows: 

Ei- = 1/2 (u.^ . + "k,j' 

where 

3u. 
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3 9u, 9u, 

"k,i "k.i = 

e.. refer to the strain tensor components; while u. refer to 
ID 1 

the displacement vector components. 

The term u, . u, . represents the nonlinear strain 
K f i K f ] 

component due to large deflection. However, it is generally 

assumed that the in-plane displacement components u, v are 

quite small compared with the deflection w so that 

• 9 w 9 w ( n\ 
"k,i "k,j ? "'i "'J - a—-3— 

i j 

In terms of x,y coordinates, the components of the total 

in-plane strain as applied to the cases of thin plate with 

large deflection can now be written as: 

rp T T 
7^ = . 9w 
X 9x 2 9x * 9x 

T T m 

m m mm 
-T ^ 9u 9v 9w 9w 
^xy 9y 9x 9x* 9y 

ij m 
where e^, and are total in-plane strain components. 

Substituting the displacement vector components given in 

Equation 5, the following equations are obtained: 
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where 

and 

—T — 
=x = + Cxo 

= I + e _ (9) 
y y yo 

-T — Y = Y + Y 
' xy ' xy xy o 

9w^ 

X 3x ? '•Sx-' ax'âx 
— - 9u , 1 f 9w-\ 2 I o 9w 
E_ = + ? hr- + 

_ ^.Sw 
y 3y ' 2 ^Sy^ ' 3y 9y (15)' + 

^xy - i? + + Ix'ly * ~5x'8y * 3y 3x 

S.-& [%r (11) 

9w 3w 
_ o o 

'xyo 9x 9y 

Bending strain-displacement relationship According to 

the theory of plates, 

•" = -S 
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e 
by 

-z 
3 

ay: 

(12) 

Stress-displacement relationship 

Making use of the stress-strain relationships and the 

strain-displacement relationships, the stress-displacement 

relationships are obtained for both the in-plane and bending 

stresses. 

In-plane stress-displacement relationship 

w 

w 

(13) 

E r3u 
2(l+v) Lay 

w 

, ^ W 
ax'By 
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Bending stress-displacement relationship 

-Ez f9"w 

l - v ^  9x" 

-Ez /•9^w 

CM 

1
 

rH By" 

-Ez 9 2 w 

V = Tiff  ̂

bxy 1+v 3x9y 

Criterion of yielding 

Among several yielding criteria, von Mises' yield 

criterion is generally accepted for steel. To determine the 

initiation of yielding in the webplate the following von Mises 

comparison stresses are first defined: 

"vM =/ °x + °y - "x- "y + 3 Tjy 

= /"l + "yi - "xi- "yi + 3 T'y, (15) 

^vMz ~v^ ̂ X2 ^ '^yz °X2* ̂ yz ^ ̂  ^xya 

If ^vMx "^vMa less than the yield strength of the 

webplate, the webplate is elastic. The subscripts 1 and 

2 refer to upper and lower surfaces of the plate, respectively. 

The terms without numerical subscript are for the middle plane 
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of the plate. Thus, and correspond to von Mises 

comparison stresses at mid-depth, on upper surface and on 

lower surface of the webplate, respectively. Naturally, bending 

and in-plane stress components are added for stress components 

with numerical subscripts. 

If the appropriate von Mises comparison stress is smaller 

than the yield strength of the webplate, , the point in 

question is considered to be elastic. 

Formulation of the Problem 

Large deflection theory of plates 

The small deflection theory of thin plates established 

by Lagrange is based on the following assumptions: 

1. Points of the plate lying initially on a normal-to-the-

middle plane of the plate remain on the normal-to-the-middle 

surface of the plate after bending. 

2. The normal stresses in the direction transverse to 

the plate can be ignored. 

3. The middle plane of plate remains neutral during 

bending of plate. 

4. The deflection of plate is very small compared with 

the thickness of plate. 

In the large deflection theory of plates, assumptions 1 

and 2 are retained; however, assumptions 3 and 4 are not 

retained any more. It is believed that if the deflection is 
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less than 40% of the thickness of plate, then the stretching 

of the middle surface can be neglected without a substantial 

error in the magnitude of maximum bending stress (29). 

Theoretically, the stretching of the middle surface is 

accompanied by terms which are proportional to the square 

products of the deformational slopes. Mathematically, these 

terms are referred to as nonlinear strain components. 

The large deflection theory of plates in which the 

stretching of the middle plane is taken into account was 

formulated by von Kârmân (15). It should be noted, however, 

that the lateral displacement or the deflection of plate is 

assumed to be the only displacement component that gives rise 

to the nonlinear components. 

If there is no lateral load acting on the plate, the 

basic equations of equilibrium of plate are given as follows: 

V** w 
T 
e 

(16) 

where: 

w = w + w 
e 
T 
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T 
also w w + w 

o 

w = deflection of plate due to loading 

= initial elastic deflection of plate 

w 
o total initial deflection 

T 
= total elastic deflection 

—T _T —T 
^x'^y'^xy total in-plane stresses 

The coordinate system is shown in Figure 4 and the sign 

convention for stresses is indicated in Figure 5. 

Equations 16 are the governing differential equations 

for the postbuckling behavior of a girder panel model shown 

in Figure 4. A set of boundary conditions associated with 

the model is described in the next subsection. 

Boundary conditions 

relationships for the interaction of the plate element and an 

adjacent boundary element (29). One relates torsion of the 

plate element to bending of the boundary element; and, another 

relates bending of the plate element to torsion of the boundary 

element. In the structural model presented previously, however. 

T 
Support conditions for w^ Kirchhoff established two 
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the flexural rigidities of boundary members in the direction 

perpendicular to the plane of plate are so large that the 

deflection vanishes along every boundary. From this view­

point, the following relationships are obtained: 

1. Along X = 0; 
, 2  T . 2  T ^ 2 ,  T 

T a 3 w 3 w 3 w 

Along X = a: 
2 T ^2 T ^2, T „ . aw 3 w 3 W 

"e = 0' GJ's ̂  = -D(— + v-^) 

3. Along y = 0: 
,2 T ^2 T ^2. T 

m SJ 3^w^ 9 W" 3 w 
w^=0. and 

4. Along y = b: 

% = SJf k 7 + V 
,T _ „ 3 r ei e 

3y: ' 3x2 

(17) 

where: G = Modulus of rigidity 

Jg, Jg = Torsional rigidities for stiffeners 

J^/ = Torsional rigidities for flanges 

Boundary conditions for in-plane displacements, u and v 

In general, two relationships can be obtained to designate the 

interaction of the plate element and an adjacent boundary 

element. One refers to the longitudinal equilibrium of a 
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boundary element, and the other refers to the equilibrium of 

this element in the direction perpendicular to the axis of the 

boundary member. These two relationships can be expressed 

explicitly along y = 0 or y = b. The longitudinal equilibrium 

conditions along x = 0 and x = a, however, are replaced by 

different and simpler conditions because the curvatures of the 

vertical stiffeners in y-direction are assumed to vanish. The 

boundary conditions are given as follows: 

1. Along X = 0 : 

u = 0 ,  a n d  f  ^  T  
^ S S 

Along X = a: 

' 1 = 0 '  a n d  
ay" "s "s 

3. Along y = 0: 

" 0^ , and -JI + ̂  = 0 

Along y = b: 

4̂ = -h °y' "̂1 ̂  - s7 V = " 

where: 

Og, Og = Stresses in left and right stiffeners, 
respectively 

0^, = Stresses in upper and lower flanges, respectively 
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Ag, Ag = Cross sectional areas of left and right 

stiffeners, respectively 

Af, Aj = Cross sectional areas of upper and lower 

flanges, respectively 

i^, ig = Flexural rigidities in y-direction of upper 

and lower flanges, respectively 

Conditions of zero net resultant forces Since there 

is no external load acting perpendicular to a boundary member, 

the corresponding resultant force should vanish at each of the 

boundaries. 

These conditions are given by the following equations: 

1. Along X = 0 

ID 

h I dy 1 +  Ar Or I +  A' a' | =0 
Q x=0 x=0 x=0 

2. Along x = a 

h I dy I + A^ Og 1 + Af | =0 
Q x=a x=a x=a 

3. Along y = 0 

h / 0^ dx 1 + A a | + A' o' | = 0 
Q y y=0 y=0 y=0 
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4. Along y = b 

hi dx I  + A a I  + A' a *  | =0 (19) 
Jo y=b y=b y=b 

bending moment at x = a 

The condition is given 

-b A. a I (20) 
x=a 

However, there are no external torques acting along two 

horizontal edges; y = 0 and y = b. Hence, the following 

conditions should be satisfied: 

M I =  -h I X dx 1 - a A' a' | =0 (21) 
y=0 y Q ^ y=0 y=0 

(y=b) (y=b) (y=b) 

Problem Formulation by Means of an Expansion of 
Displacement Components in Terms of 

an Arbitrary Parameter 

The large deflection theory of plates is a nonlinear 

theory in a geometric sense, and its mathematical nature is 

still not well known at the present time. A rigorous analyt­

ical solution to the problem is extremely difficult. Because 

Bending moment conditions The 

should be of uniquely assigned value, 

as follows : 

M I = -h / y dy I 
x=a J Q x=a 
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of this, an attempt is made herein to solve the problem 

approximately with the experimental evidence as a guide. A 

method of expanding the solutions of Equation 16 into 

polynomial series is proposed in this thesis. It is seen that 

this method enables the linearization of the nonlinear equa­

tions and that the solution process is systematic. This 

polynomial series expansion is based on an engineering judge­

ment on the load-displacement relationships experimentally 

obtained. 

Displacements, stresses and stress-displacement relations in 
terms of an arbitrary parameter 

The displacement components u, v and w may be expanded 

into the following forms in terms of an arbitrary parameter, A: 

u = Ê u'k) 
k=l 

V = ï v'k) A'' 
k=l 

w = Ê w'k) ^k 

k=l 

where u^^^, v^^^ and (k = 1,2,3,...) are unknowns yet to 

be determined. The terms corresponding to the first power may 

be identified as those which can be considered in the usual 

small deflection theory of plates. The terms corresponding to 
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the second power will be found to introduce the first 

approximation to the large deflection of plates. Solutions of 

additional higher power equations will give the second and 

then higher approximations (26, 27). In this thesis, however, 

consideration will be limited only up to the third order 

because of great complexity involved in the solution process 

for the powers higher than the third. By keeping the third 

power terms it is possible to evaluate the relative signifi­

cance of terms corresponding to the first through the third 

powers. Thus, the expansion of displacement components 

mentioned previously may be rewritten in the following 

manner ; 

^ u " u< 2 )  A 

1 V r — v'2' < A2 

w"' 
> 

A3 
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Similarly , the in-plane and the bending stress components may 

be expanded into the following form: 

X N 
0 fs-'i) F(2) 
X x X X 

F(l) F(3) 
""y y 

T 
-(2) 

' A ^ 
xy 

i 

xy xy xy 

^bx 
•< » 

1 
Q
 

tx
 

-r (1) _(2) ^(3) 

.A'/ 

bxy N ^ X . bxy 
T ' 
bxy 

T ' 
bxy ̂  

Substitution of Equation 22 and Equation 23 into Equation 13 

yields the following relationship: 

F(l) F(2) F(3) 
X X x 

â(l) F(2) 
y y y 

-d) -(2) fO) 
xy xy xy 
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u 
(1) 

u 
( 2 )  

u 
(3) 

V 
(1) 

V 
( 2 )  (3) 

^ w 
(1) 

w 
( 2 )  

w 
(3) 

^ ̂ aw(l) 3w(2) 

/ 2 1 9y ' 0 ,  y (  2 ̂ 3x 9x 9x 
+ V 

a«(l) 3W<2' 

3y 9y 

0 ,  

0, 

9y 

(1)., . vrawtl)^: 3w(l) 9w(2) . 3w(l) Bw/Z) 
•J + ?1-Â1F—J ' —— + 

1-v 9w(l) 9w(l) 

9x 9y 

9y 9y 9x 9x 

1-v 9w(2) , 9w(l) 9w^^^ 
9 l " 9x 9y 9y 9x 

(24) 

T ( 0 ) 
Since Wg = w + w , the substitution of Equation 22 into 

Equation 14 yields the following relationship: 

bxo 

byo 

k bxyo 

(1) 0(2) o(3) 
bx bx bx 

(1) 9(2) .(3) 
by by by 

(1) t(2) -(3) 
bxy bxy bxy 

\ 

E z < 

1-v: 

21- + vïl-
9x2 9y2 

»:_+ vf: 

3y: 

L (1-v) 

3x2 

_3f_ 
3x9y 

w 
( 0 )  

w 
(1) 

w 
(2) _(3) 

w (25) 
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Equations of equilibrium in terms of polynomial series 

Upon substitutions of the polynomial series for both 

displacement components. Equation 22, and the in-plane 

stresses. Equation 23, into Equation 16, the following sets 

of simultaneous equations are obtained. 

Zero order approximation 

9x 
+ 

+ a —— + ZT 
yo gy2 xyo 3x3y 

J (26) 

1st order approximation 

(27) 

V^w 
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2nd order approximation 

3^(2) 37(2) 

3?<2) 
xy 

3x 
+ 

3F(2) 
Y 

3y 
= 0 

( 2 8 )  

(2) ^ h n-(2) 
X 

3x' 

+ F(2) 

3y^ 

+ 2^(2) 
xy 3x3y ) 

+ (a 
(1) 
X 

9x 

1: + ?(!) 
2 y 

3y 
4 + 

(o 
xo 

+ a 
3x' 

yo 
+ 2T 

3y = xyo 3x3y 
) w (2)J 

3rd order approximation 

3F(3) aT(3) 
X 

+ 
9x 3y 

37"' 3?'^' 

. 0 

3x^ ^ 3y' 
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-(2) 
X 

ax' 

+ 0^2) 

9y' 
+ 2T 

( 2 )  9 
xy 8x9y ) w 

(1) 

+ ("xo ^ ̂ V 17 ̂  &) '"> 

Boundary conditions in terms of polynomial series 

Substitutions of Equation 22 and Equation 23 into tha 

boundary conditions shown in Equations 17 through Equation 21 

make it possible to expand these conditions into series forms. 

T 
Support conditions for The support conditions are 

linear with respect to the perturbation; therefore, 

1. Along x = 0: 

w (w) -

2. Along x = a: 

3. Along y = 0: (gg) 

4. Along y = b: 
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=  0 ,  GJ 
3 r 9 W 

( k )  
9 

( k )  

f 9x *• 9xSy 
+ V 

3y' 9x^ 

where 

k = 0,1,2,3. 

Boundary conditions for in-plane displacements u, v 

Stresses in flanges and stiffeners have the following 

relationships: 

"s (or 0') = E 1^; Oj (or o') = E (31) 

Therefore, these stresses can be expanded into series forms by 

virtue of Equation 23. For example, can be expanded as 

follows: 

- ̂  3y ( 
(1) „(2) „(3) 

V V ) (32) 

The externally applied shearing stress, x can be expanded into 

a series; 

T = A + ^2 ^ ̂ (3) ^3 ^ (33) 

Upon substitutions of Equations 1, 23, 33 and the equations 

similar to Equation 32 into Equation 18 provide the necessary 

boundary conditions. 
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Zero order The zero order boundary conditions are 

obtained as follows: 

1. Along X = 0: "^^yo ~ ^ 

2. Along x = a : ^ ® 

3. Along y = 0: = 0 and T^yo " ° 

4. Along y = b; = 0 and ""^xyo ~ ̂  

Higher order The higher order boundary conditions 

are obtained as follows: 

1. Along X = 0 : u = 0 and 

E + _h ?(%)= _h .(k) 

3y: As 

2. Along x = a; = 0 and 
3y" 

, 2 „ ( k )  
E _ JL F(K)= ZH ̂ (K) 

ay: 

3. Along y = 0 : 

,4»(k) 
Ei ' ^ = h 0^^^ and (35) 
' 9x" Y 

E iiaî  + h -(k), 0 
3%: ''Y 

4. Along y = b: 
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. _h â'kl and 
' 3x' y 

• ^ - 4 ' S ' - "  

where k = 1,2,3. 

Conditions of no net resultant force Upon substitutions 

of Equations 1, 24 and the equations similar to Equation 32 into 

Equation 19 provide the following conditions. 

Zero order 

h I dy = 0 along x = 0 and x = a, and 

h I dx = 0 along y = 0 and y = b. (3 6) 

0 

Higher order 

h / dy + E (A. u /k) I + I 1 = 0 
J o  f yib ' yio 

along x = 0 and x = a, and 

h / dx + E (A I + I ) = 0 
jfo y I s xlo s x=a^ 

(37) 
along y = 0 and y = b, where k = 1,2,3. 
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Bending moment conditions The externally applied 

bending moment, M, can also be expanded into a polynomial 

series ; 

M = A + (38) 

The bending moment conditions for zero order and higher order 

approximations are obtained as follows: 

Zero order 

b 

y dy = 0 along x = a, and 

0 

X dx = 0 along y = 0 and y = b (39) 

0 

Higher order 

(k) 
= -h I y dy - EA^b ̂  | along x = a, 

J o  

(k) 
X dx + EA' a ̂  I = 0 along y = 0 and y = b. 

y s 3y xla 

° (40) 

Choice of polynomial expansion parameter 

Figure 6 indicates typical load-displacement curves for 

webplates with initial deflections subjected to externally 

applied loads in the plane of the webplates (5, 21, 22, 26, 27, 
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Load, P 

initial 
deflection Load curve 

plate 
buckling 
load, P_ 

CI 

Total deflection, w 

Load, P 

Load V curve 

In-plane displacement 
u or V 

Figure 6. Typical load-displacement curves 
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28). The fact that deflection w may be expressed in polynomial 

series with first, second and third powers in terms of the 

magnitude of load suggests that the magnitude of load could be 

taken as parameter A. The third equation in Equation 22 

corresponds to the load-deflection curve shown in Figure 6. On 

the other hand, it is seen from Figure 6 that the in-plane 

displacement components u and v may also be expressed in terms 

of the load parameter. A question exists regarding the maximum 

power that should be assigned to the expansions of the in-plane 

displacement components u and v. They may be expanded only up 

to the quadratic term rather than up to the cubic term. If the 

quadratic series are used for the in-plane displacement 

components u and v, the deflection w may also be conveniently 

expanded only up to the quadratic term. Then, the expansion 

of the displacement components u, v and w in Equation 22 can 

be replaced by the following simpler expansion: 

V 

w 

> = 

/ u( l )  

V 

w 

(1)  

(1) 

u 

V 

w 

( 2 )  ,  

( 2 )  

( 2 )  

(41) 

Consequently, Equations 23, 24 and 25 can be simplified also. 

Since the simplification of these equations is an obvious one, 

it is not presented herein, A detailed discussion on the 

number of terms in the expansions of displacement components 
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is provided in Appendix D. 

If the average edge shearing stress, T is taken as the 

load parameter, then A, its nondimensionalized form can be 

conveniently defined in the following manner: 

A = ̂  , (42) 
Yw 

where refers to the yield strength of webplate. Then, 

from Equations 33 and 42, the following equations are obtained; 

=0 and = g, (43) 

If the externally applied bending moment, M, is taken 

as the load parameter, then A can be conveniently defined in 

the following manner: 

M 
A = (44) 

°Yw h • 

Then, from Equations 38 and 42, the following equations are 

obtained ; 

h a , = 0 and = o. (45) 

Method of solution 

It is seen that by expansion of displacements in poly­

nomial forms, the equations of equilibrium indicated by 

Equation 16 have been linearized into sets of equations given 
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in Equations 26 through 29. The form of these sets of 

equations indicates that the solution to the problem consists 

of solving the basic set of equations four times, from zero 

order to third order. After a set of equations is solved, the 

solutions are substituted into the next higher order equations 

and the solution to this new set of equations is obtained. 

This process of solution is repeated from zero order approxi­

mation through third order approximation, each time satisfying 

an appropriate set of boundary conditions. In Equations 26 

through 29, the first two approximations, i.e., zero and first 

order approximations. Equations 26 and 27, represent the 

linear portion of the large deflection equations and the second 

and third order approximations. Equations 28 and 29, correspond 

to the nonlinear portion of the same equations. Also while the 

displacement components are expanded into cubic polynomial 

forms in terms of the load parameter, the in-plane stresses 

in terms of the same parameter have powers as high as twice of 

those for displacements because of the nonlinear products 

appearing in Equation 6. However, since the boundary condi­

tions are met only four times, i.e., for zero order through 

third order, the stresses corresponding to orders higher than 

the third have no meaning. Because of this, every mechanical 

quantity is totaled from zero through third order components. 
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It is necessary to determine the initial in-plane stresses 

a , o ^ and T first. Because of the nature of these 
xo yo xyo 

initial stresses, the precise analytical determination of them 

V  
is not feasible. An approximate solution developed by Skaloud 

(25) is used in this thesis. The detailed description of 

initial stress distribution is given in the following section. 

The remaining zero order equations and all sets of higher 

order equations are too complicated to be solved analytically. 

In the section following the next, all equations in this group, 

including the boundary conditions, are expressed in terms of 

displacement components and nondimensionalized. The last 

section in this chapter describes the numerical solution of 

the third equation in the zero order approximation, and of 

individual sets of equations in the higher order approximations, 

by means of finite differences. 

Initial In-plane Stresses 

The purpose of this section is to obtain the distribution 

of the initial in-plane stress components and 

The basic differential equations are the first and the second 

equations in Equation 26. The boundary conditions for these 

stresses are given in Equations 34, 36 and 39. 

Figure 7 shows a typical initial (or residual) in-plane 

stress distribution in a plate girder cross section when the 

flanges are continuously welded along the webplate (6, 10, 12, 
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22). If vertical stiffeners are welded on top of it, the 

stress distribution will be affected by this additional welding 

and become as illustrated in Figure 8 (25). Thus, taking a 

particular coordinate system as shown in Figure 8, the stress 

distribution may be reasonably approximated by the following 

equations ; 

1 - 4 (|)̂  1 - 12 (g) 
•'12"̂  

-  ( #  

X.2 
1 - 4  (&3 ' ] (46, 47) 

Txyo = -256 : 
c X y 

b' 

where x = x ' + -^ a and y = y ' + ̂  b 

It is seen that Equations 46, 47 satisfy all boundary 

conditions for the in-plane stresses. Equations 34, 36 and 39, 

as well as the in-plane equilibrium equations, the first two 

of Equations 26. 

It is an experimental fact (6, 10, 12, 22, 25) that 

> 0 at x' = i a and y' = 0, (48) 

In terms of , the initial in-plane stresses are obtained 

as follows : 

"ko'-I <!>' 'o [1 - 4 ^ [1 - 12 g (49) 
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Figure 8. Residual stress distribution in a welded panel 
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T 

" y o ' - l  ° o  1  ^  ( ë ' ] '  

The distributions of these stresses are illustrated in Figure 8. 

The first and the second equations in Equations 26 have 

been analytically solved. Only the third equation in Equations 

26 remains to be solved. The necessary boundary conditions are 

those presented for k = 0 in Equations 30. 

Let N be the dimension of mesh points and 

Nondimensionalized Zero Order Equation 

in Terms of Displacements 

b = Xa 

u'kl . h a Ik); w«=hw« 

(k = 1,2,3) 

w = A w 
o o 

== = N?r y = 1 *' "TE? S': y' = 1' (50) 

a = OQ/E 

0 = a/h 

a 
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Then, the nondimensionalized initial in-plane stresses are 

obtained as follows; 

xo 
2X-

1 - 4  

yo 
1 
2 

^ ^ 2 I 1 __ A r J1 1 2 [1 - " 1 - 4 (51) 

. I I 

xyo = - X fe) (s?r) 11 - ^ : - « (N?T)^ 

The equation of equilibrium in z-direction is then given by 

the following equation: 

[• 
ar , 2 a 

+ —— — + -1 -11] w(o) 

as = 3^2 x"* an" 

= 12 aB 1-V 

(N-1) 
(5, 

2 O 

2 » XO 2^2 
+ _Z£ -i_ + 2 -i ) w. 

3IT X 3€3n 

(52) 

The support conditions for which are shown in Equation 30 

are nondimensionalized and presented in a later section. 

Nondimensionalized Higher Order Equations 

in Terms of Displacements 

Let 

Ç = 
Yw 

and VI = f (53) 
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The higher order equations shown in Equations 27, 28 and 29 

are first expressed in terms of displacements and then non-

dimensionalized using Equations 50 and 53: 

L L L 
uu uv uw 

L L L 
vu vv vw 

L L L 
wu WV WW 

a(i) a(2) a(3) 

v( i )  v( 2 )  v( 3 )  

w( l )  w( 2 )  w( 3 )  

/ I )  
u 

,(2, 

/ I )  
V 

/ I )  
w ^6" 

(54) 

where . refers to a set of linear differential operators 

defined as follows: 

uu 
2X an' 

l+v 8' 
uv 

2À 3Ç9ri 

'"o 8^ . l+v '"o 3' . 1-v 3^ 

ag 2x^ 9n acsn 2x^ 9C 9n' 

3 ̂ w. rs 2 
r ' o ^ 1-v ^o 1 9 ^ l+v 
I ^ 9 ^ 9 9 J 

9 ̂ w 

9C' 

9 "l 
(—) -

2X^ 9T1 94 2X^ 9Ç9n an ; 
m 

l+v 9' 
vu 2X 9Ç9n 
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^vw = if) 
1 , 1+v '"o 3' , 1-v '"o a' . + + 

9n 9n^ 2A 3Ç agsn 2\ sn aç-

+ (_i &Z2 + iz2 Jl + i±}i [ ^o] _A 

A/ 3n' 2A 9n 2A 9Ç3n 9Ç 

3^w 
= r_° ̂ ̂  !!Î£) ̂  + izy !!!° _i 

3Ç2 9n^ 9Ç 9Ç9n 9n 

wv = - (4 
9 3 

+ V-
O v  9  . 1 - v  3  

X A/ 3n' 

j d_ + ±22 ( 2.) 

95' 3n asan as 

1 rN-l> r 9"* 
WW 12 

(£!zi] r_^ + _1 _J— + _A _i_] 
By ag" A^ 95:9%= A" gn" 

9 ̂ w f 3w 9^w 
+ (N-1) (^) f — ( + 2^ 

6 L ag 9Ç2 9n^ 

£) + 1_V 
A^ 9n 9Ç3n 

3 

9Ç 

+ (N-1) (^) 
e 

aw 
o f 1 

a^w 9 ̂ w 
(_k o + 

3r) A" 9n^ A^ 3Ç2 

+ 1-v 
9w 9^w s 
o o 

9Ç 9G9n, 3n 
+ 4^) 3^ 1-v 

N-1 

xo 3^2 
21+ J:g 

X: yo an" 
A1+ 2 1? 

2 ^ 

• X xyo 
asan 

and, b^^^ and b^^^ are constant vectors associated with 

the equations of equilibrium defined as follows: 



www.manaraa.com

rH 
LO 

CO 
rH CM 

CT CO fo. 
?> ft) 
CM W 
CO CO 1—I CM N 

CO sr 
CO CO 

1—I çr fO 
CO 

•> r< rH 
fO + CN >1 

rH % ;> CM 
+ + H CM 
rH eg << 

o 
+ rH + 

II cv| 
y—«S i— \ P 
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CM CM 
r—! CM CO \ CO UP 

rH CM (D CO 
— > rH rH 
A CM CO CM CM 

» p: rH UP 1—i 
CM CO cr CM CO X 

• •• y—» Ct5 CO Jt> 
o iH fO 

ijS «X 
II CO r—1 rH m rH CM rH 

ro JUlf •< fT P> 1 
\ / CO \ / 

CO g 
(TO CO TH 

w > 
Si iH ;> CM rH 7> 

1 CÛ. 1 r< 1 ca 1 ca XJ» 
53 rH CN 3 rH CN S ;3. 

o + + 
II 11 II 1 

iH CN OJ CN 
53 — > a 

0 CM 
r 

CM CD 
CO 

-

/ 
CM 

0 N 
'—1 CÛ rH 0 cr 

1 CN CM fD CD CD 
3 CO CM LkT 

£T> rt> CD 
/ V 

1 CM 
rH 

+ 'W fT 
rH rH fD 

c CM CD 
CO 

CO 
H M 

pr c 
CM CO ? CM CD CO 
CO UP <rD 03 

CO 
+ 

rH (N CM 

rH >1 CM r< C r< 

X \ / rH 

rH ijJ" rH CM 
rH r< CO 1 

g 
r< 
CO. 

rH 
1 CO. 

CN ct> eg z 
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)(3) = -fNzil 

^ e 

9w( l )  

L ag 

3:3(2) 1+v 3w a(l) 3:3(2) 

2X^ 3n 3g8n 

+ lz2 3w(^) 3w(2) 9:w(l) 3w(2) 

2X' 3g 3n' 3C' 3C 

, 1+v 3:w(l) 3 #(2) i-v 32w(l) Bw^^) 
+ + 

2X: 3Ç3n 3n 2À 3n' 3C 

)(3) = -rHzli 

^ 3 ^ 

1 3w(l) 

3n 

3:3(2) 

3n^ 

1+v 3w(l) 3:w(2) 

2A 3Ç 9San 

, i-v 3w(^) 3:3(2) . 1 a^w^i) 33(2) 
+ + 
. 2X 3TI 3g: 3n^ 3n 

+ 323(1) 33(2) ^ 3:3(1) 33(2) 

2X 3Ç3n 3g 2x ag- 3n 

(3) _ 
w 

(iiii) (5^1) -l! 4. -i g.'" 
N-1 yç 3C : y 3%: 

= (1) 
— 9' .) w(2) .(Oçâ_) [Izyl] + 2 
X 3Ç3T1 N-1 yç 

(,(2) 3= + _1 g(2) _3l + 2 ̂  f 1 =(2) 9: 1 ~(1) 

^ 3Ç: X: ^ 9n 
xy 

w 
3Ç3n 

_ (Nzl) ^^*0 ^33(1) 93(2) ^ ̂  93(1) 33 (2) j 

6 3^: 3g 9C X: 3n 3n 
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(NZI) !!!o (J. ̂  ̂ ̂ ̂  9w(2) ^ 

g 9n^ x'* 9n 9n ag 3g 

_ ^9w(l) 9w(2) ^ 9w(l) 8w(2)^ 

3 3Ç 9n 9n 9Ç 9Ç9r) 

It was observed through many experiments that total 

initial deflection is somewhat arbitrary in its shape and 

magnitude. Nevertheless, the following expression for w^ is 

found to approximate most total initial deflection surfaces 

and hence will be used in this study; 

w = A w 
o o 

w^ = (1 - cos wC) (1 - cos wn) 

where (55) 

» = srr IT 

Upon substitution of this expression for w^ into the 

previous relationships, Equations 54, the equations of 

equilibrium are obtained as follows: 

L L L 
uu uv uw 

L L L 
vu vv vw 

L L L 
y wu wv WW ^ 

%(1) s(2) .(3) 

3(1) 5(2) -(3) 

%(!) *(2) %(3) 

£(1) 6(2) b(3) 

Î>(1) £(2) b(3) 

b(l) 6(2) 5(3) 

( 5 6 )  
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where [L^j] is a linear differential operator matrix, 

w^^^) is a solution vector for k-th 

order approximation, and 

is a constant vector for k-th 
^ u V w •' 

order approximation. 

Elements of [L^j] are given as follows: 

ll + 
2X2 Brj: 

L = 1+2 

2\ scan 

L = 2-ÏÏ j sin wn(l - cos wn) —^ (1 - cos œÇ) 
uw ^3^ I 9ç2 2X2 

• sin wn —— + ^ ̂  sin wÇ (1 - cos wn) —^ 
9Ç3T1 • 2X2 3^2 

+ W r - (l + cos (OÇ cos wn + COS wÇ 
^ 2X2 

+ COS wn 1 — + 01 f^ —) sin uÇ sin wn — 
2X2 J 3Ç 2X2 STi . 

_ 1+v 32 
^vu 

2X 3Ç3n 
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^7ë T Të z 7ë~^ c (T-N) 

tm. 

5e 
— Urn UTS 5fT) UTS — 
e A 

Y  u e  r  

^ ~ L 5rr) soo — + 

Um soo . r I I — + Urn soo 5ro soo [f\ + —~J f ^ ~ 
AM 

f 1:6 zY 
— Uro UTS 5M UTS + 
e (\-T 

56 

T 
Um soo — + 5m soo + Urn soo 5^ soo 

5e 

"ë 

YZ < YZ 
— Um UTS 5m UTS 5'̂  soo -—- + 

(\-T 

Um soo — + Um soo 5(^ soo + r) 4] m + 

YZ ke5e 
—— Um UTS (5m soo - %) —- + —— (Um soo - %) 
,e • (\-T zG 

z^e sY 1 g a* 
5" UTS — + — UTS (5m soo _ X) — 1 

:Se Z zke :Y 

zG (\-T zG T 

SS 
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+ sin (jÇ (1 - cos wn) j^- (l + COS uÇ cos wn 

+ cos uÇ + — COS wn 1 + ^ (1 - COS wg) sin^ wn 
X" J 

sin toÇ 
I?-'(F) (1 - COS toÇ) sin wn 

^ + v) cos toÇ COS WTl + — COS a)Tl + — COS uÇ 

+ sin^wÇ • sin COT) (1 - cos cori) 1-

3n 

+  —  (l- V ^ )  (N 

TT^ 
-1) [à 

32 a,_ ^2 
+ :Z2_^ 

3n^ 

+ 2 -JSyo _1 
2 ^ 

X 9C3n 

The constant vectors are given as follows: 

= 0! bjl) = 0; bjl) = 0 

g(2) = -(^1 f 3"' ' ' + 

^ 6 L AE 3E^ 

~(1) s2a(l) x+v 3w(l) a^w^l) 

8 L 35 3g^ 2X^ 3n 3Ç3n 
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1-v 

2X' 

3:3(1) 

3n^ 

£ ( 2 )  -(—) 
g 

1 Sw'l) lw<" , 1+v aw'il azw'i) 

3TI 3n' 2X 3Ç 3Ç3T1 

1-v 3w(l) 

2X 9n 3C = 

g ( 2 )  =  
w 

- (l-v2) r^l f2Èl rg(i) _ll + J: 5(1) 
^ _ 2  '  ^ '  ^ X  2  1 2  y TT^ yç ag 3n' 

(1) 

+ 2 -2SY w(l) - 4(^) 

X 3Ç3T1 3 

rN-li 
Y cos uÇd - cos con) 

3 w 1  2  ̂  V r3w "j 2 

35 %: 3n 2X = 
(1 - cos wÇ) cos con 

1 f3w 

9n 3g 
+ ^ sin toÇ sin con 

3w( l )  3w( l )  

3Ç 9n 

g (3) 
u = -(—] r 

8 L 

9w(l) 3:w(2) ^ 1+v 3w(l) 3^3^^) 

35 35' 2X: 3n 353n 

+ IzZ 3w(l) 3:3(2) ̂  a^wCl) 3w(2) 

2X: 35 3n' 3n: 35 
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+ 
1+v 3w(2) i_v 3w 

2X 9ri 2X- 3n' 9Ç 

(3) _ rN-1 
V 

=  - ( — }  
JL 3*w(2) ^ ^ (1) 32^(2) 

3ri 3n ' 2X 3C 3g3n 

+ 
1-v 9w(l) ,2~(1) ^-(2) 

1 a'w'"' 3w 

2A 3ri 9Ç' A/ 3n: 9n 

+ 
1+v 3w(2) i_v 32w(l) 3w(2) 

2A 9Gan ac 2% as 9n 

= - (1-v') (^) + 
TT MÇ as' X 

1 gfi) _i: 
2 y 

3n' 

+ 2 1 f(l) ) w(2) - (1-v:) (-Nz£) (ÇLË.) 
xy 

acan 

2 \ fN-l-i ca3" 

TT yç 

(s (21 -il + J: ô<2) _li + 2 i t<2) _=!_] «<1) 

^ H' X' y 3n^ X "y sçan 

- 4 (221) I cos ws (1 - cos <on)(-'®'" 3**'' 
3 L as as 

V 8w( i )  3w(2) 
+ — J + (1 - cos uS) cos con 

A ̂  3n 3ri 

r 1 aw(i) aw(2) V aw(i) aw^^) 
I + J + 
A" 9n an A^ as as 
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sin œÇ sin (on 
aç 9n an ag 

The in-plane stresses appearing above are expressible in the 

following matrix form: 

g (2) -j3) 
X X X 

g(l) g (2) g (3) 
y y y 

= (1) =(2) -(3) 
\ xy xy xy 

/ 

_Ç N-1 

a3 1-v^ 

3 
9Ç' 

V 9 
X 9n' 

.9 1 9 
W' A 3n' 

2TT(^)^sin wÇd-cos wn) ̂  

+ — (1-cos wC) sin un — 1 
9n'' 

\ 

2""" r —̂  s lu wn (1-cos œÇ) —̂  
9 an 

+ V sin uÇ (1-cos wn) ̂  j 

1—V 9 1—V '9 
2 9n' 2 9Ç' 

ir (1-v) sin œÇ (1-cos wn) 

+ (1 -COS wÇ) sin wn -g^J 
/ 
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'a(i) û(2) 

v(l) v(2) v(3) 

*(2) *(3)^. 

Ç (N-1) 

aB l-v 

0 ,  

1 f3w ̂ ^ ̂  2 

+ 

V f3w 
(1) 

] %  
2X^ 3n 

aw(i) 9w(2) aw(3w(2) 

3Ç 3Ç 3ri 3n 

0 ,  

1  r  9 w 1  2  

2%: 3n 

V ̂ 3w j2 

2 3Ç 

2 3w(l) 3w(2) ^ 3w(l) 3w(2) 

X' 9n 9ri as 35 

0 ,  

l-v 

2 X 

3w( l )  3w( l )  

ac 3n 

l-v^3w(l) 3w(2) 3w(l) 3w(2) ̂  

2X 3Ç 3n 3n H 



www.manaraa.com

60b 

Let 

Nondimensionalized Boundary Conditions 

in Terms of Displacements 

Ag A' A A' 

+f = EE ; = EE' +s = EE: *s = EE 

p = 24 (l-v) (——) ; xlj' = 24 (l-v) [——] (58) 
hS a a 

J J' 
= 24 (l-v)(-^); ijj' = 24 (l-v) 

® a s a 

d. i 
Kf = 64 (l-v^) (—] (—; kI = 64 (1-v^) (-^] [——] 
^ gz h: a ^ 6= h* a 

Then the boundary conditions presented in Equations 30 through 

40 are expressed in terms of displacements and then non­

dimensionalized using Equations 50, 53 and 58. 

1. Support conditions for w: The conditions are 

represented by the following differential equations: 

(k) 
w ^  = 0  a l o n g  e a c h  b o u n d a r y  m e m b e r  

where L = -^(N-1) —— ——[ J — — — along x — 0 
" ^ X' 3n 3£3r) H' X' 3n' 

L = i(M-l) — — —]+ —^ ^ along x = a 
" " X' 3n 353n 35= x' 3n= 
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(——) - —7 along y = 0 
X 9Ç 9g2m 3TI^ 3Ç 

1 ^ f . "5 2 

= 4"-" - .5 ac.n 
(—] + -7 + V-

an' 3Ç-
along y = b, 

(59) 

also 

(k) 
w = 0 along each boundary member (k=0,l,2,3) (60) 

2. Boundary conditions for in-plane displacements u and v: 

Along X = 0 

The conditions are given by the following matrix equation 

(t-u' 
r ^ d )  i ^ ( 2 )  a(3)i 

v(l) 9(2) v(3) 

= (b(") 

where 2X (1+v) N-1 3n 

6 ( 2 )  b ( 3 ) )  

T - _1 _il 4- 1 r 
V ,2 2 (1+v) .N-1 3C 

X^ 3TI 

( D -  1  a3 

(N-1) 2 Ç<J), 
(61) 

(2)= _ 

(3) 

aw( i )  3w( i )  
2(1+v)^ XB 3C 

1 ^9w(^) 3w 

3ri 

( 2 )  3w( i )  aw( 2 )  
2(l+v)*=XBi 3Ç 3n 3n 3C 
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also = 0 

( k )  

(K = 1,2,3) 

(62) 
and V (x = 0; y = 0) = 0 (k=l,2,3) 

Along X = a 

Similarly, the boundary conditions along x = a are given 

by: 

ad) a(2) ~(3) = £'2', £<31) 

where 

u 2À ( 1+v) ̂()) 
1 (J.) _A_ 
l+v) U'J N-1 

_9 
9n 

= 

(1) 

3n^ 

1 f 1-1 1 
2X (l+v) N-1 

a3 

3Ç 

-1,2 

( 2 )  

(3) _ 

(N-1) 

1 3w 
(1) 

2(l+v)*'Xg 8Ç 

r9w( l )  

9w( l )  

9ri 

3w(2) 3w( l )  3w ( 2 )  

2 (l+v)(j)^X3 3n 3n as 

(63) 

also —^ =0 (k = 1,2,3) (64) 
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Along y = 0 

The conditions are divided into the bending equations 

and the shear equations. . For this reason, the subscripts b 

and s are used in the following expression. 

^ub ^vb 

L L 
us vs 

^(1) .(2) a(3)' 
b 

CM 

v(l) v(2) v(3)^ b(l) 
^ S 

£(2) 
s 

b'3) 
S ^ 

where 

1 9 

X 3n 

us 3^2 2{l+v)(()| X(N-l) 9n 

vs 
2(l+v)(f)^(N-l) 8Ç 

(1) _ = 0 

g(2) 
s 

£(3) 
s 

3w( l )  3w( l )  

2(l+v)(i)^X8 9Ç 

1 

9ri 

2(l+v)(J)iX6 9Ç 9n 9n 95 

(65) 

-I'' 

= 0 

= (^) r-^( 
23 ^ 9n 
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^ 3w(l) 3w(2) 

9n 9n 9Ç aç 

Along y = b 

y = 

The boundary conditions here are similar to those along 

0 .  

^ub ^vb 

us vs 

ad) 

V 

3(2) a(3) 

(1) ~(2) 
V 

(3) 

£(3)^ 

g(2) 
S 

where 

^ub - ̂ 9T 

a* . 1 9 

^ ac" X 9n 

us 
9Ç 

9^ 1 _9 
2 2 (1+v) (fj^X (N-1) 9TI 

vs 2 (1+v) (j)J (N-1) 9C 

bjl' = 0 

b<2) 
S 

9w( l )  9w( l )  
2(l+v)4^XB 95 3n 

(66) 

g(3) 
s 

1 r9w(l) ,*(2) 

2 (1+v) (j)^XB I 9Ç 9n 

, 9w(2)) 

9n 9Ç 
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(1) _ 

£ ( 2 ,  -(Hli) r 
26 3n 3Ç 

Ê<3) = -(^U;7 
aw(i) 3w(2) ^ ̂ 3w(i) aw(2) 

9ri 3n 35 85 

3. Conditions of no net resultant forces 

Along X = 0 or X = a 

The condition is given by the following expression: 

V 
u( l )  a(2) -(3) 

f(l) *(2) v(3) 

(2) ^(3) 

where and are linear operators shown as follows 

^N—1 

L = / dn — + 6^"^ (|>f (N-1) — + 6° <j)i (N-1) — 
^ 1-v^J Q 3g ^ ag ^ ag 

•N-1 
V 

l-v 
dn 

an 

-N-1 

i-v 
dn (67) 

and 6" = 1 when n = Q 

0 when t\ Q 
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, f and f are functions as shown below: 
WW w 

«w" - 0 

j ( 2 )  ^  l l - g z l l  f  ( â S i l î . )  !  +  ^  (  
w i(—) r 

3C 

V 2 

3n 

(3) ^ .N-l^ 

I B ^ 

3w(l) aw(2) ^ _v 3w(l) 3w(2) 

35 as 8TI 9n 

Along y = 0 or y = b 

The condition is given by the following expression: 

a(i) a(2) a (3) 

v( i )  v( 2 )  v( 3 )  

= (g (1) (2) _(3) 
g V.-'W ' ̂w Sr., ') •'w 

where L^, and are linear integro-differential operators 

shown as follows: 

(68) 
-N-1 

= V 

1-v' 
dC — 

^v = 
1-v' 

N-1 

dÇ — + 
3n 

N-1 
(D 

9n 
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N-1 

dC 

and ôç = 1 when Ç = Q 

= 0 when K ^ Q 

( k )  
(k = 1,2,3) are functions defined as follows; 

gj" = 0 

(2) . 1 (îti) r JL a + 
'W 

6 9TI 

awj^lj 2 

9g 

(3) ̂  rN::!. 
I g 

_2 9w(2) ̂  9w(2) 

L-x^ 3n an ag 9g 

4. Bending moment conditions The bending moment is 

assigned a value at the edge x = a. On the other hand, the 

resultant bending moment should vanish along two edges: 

y = 0 and y = b, because of no external bending moments acting 

there. Considering the overall equilibrium of the panel, and 

referring to Figure 9, the following equation is obtained: 

M I - M I 
x=a x=0 

= -Sa. (69) 
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Figure 9. External force system 
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Let 

b M 

S 
(70) 

then. 

M I = M I -S a = (g-
x=a x=0 

- l) S a = (0-A) Th a' (71) 

The parameter 6 indicates the interaction between the bending 

moment and the shearing stress. Therefore, the equation can be 

given in the following expression: 

'afi) a(2) aof* 

5(1) v(2) v(3) 

= (1, 0, 0) 

(72) 

+ X = a. 

Also, 

(L-, L-) 

a(i) *(2) a(3) 

~(1) -(2) ~(3) 
V V V 

along y = 0 or y = b. 

where L", L"^ and and are linear operators defined 
u V gS 

as follows: 
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A-

(N-1) (l-v^) 

= A V 

(N-1)(l-v^) 

-N-1 

0 

N-1 

0 

" dn ^ *f IT 

n dn 
9n 

along 

x=a 

•N-1 
= V 

(N-1)(1-v:) 3Ç 

-N-1 

A(N-1)(l-v^) 

gN-1 

( fs r 
on 

along 

y=0 or 

y=b. 

and 

-N-l 

Lf — I n dn 
^ (N-Dd-V^) ,y 0 

N-1 

(N-1) (1-V^) 

r 
Ç dC 

0 

Functions and have been defined in Equations 67 
w 

and 58. 

Numerical Solutions by Means of Finite Difference Method 

The purpose of this section is to illustrate the use of 

the finite difference method in solving Equations 52 and, 54 

or 56, with appropriate boundary conditions mentioned in the 
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previous section. The reason for the use of this method rather 

than the closed-form solution is the complexity of the boundary 

conditions. In the finite different method, the basic differ­

ential equations as well as the boundary conditions are converted 

into sets of simultaneous algebraic equations. 

Mesh point system 

It was explained earlier that the displacement components 

u, v and w are selected as the unknowns. The structural system 

illustrated in Figure 4 is converted into sets of discrete 

points in a systematic manner. Figures 10 through 13 show the 

general numbering systems for N x N meshes. N designates the 

size (number of mesh lines in one direction) of the mesh 

point system. It should be noted that at one grid point, or 

mesh point, there are three unknowns, namely, u, v and w at 

that point. The total number of unknowns corresponding to 

the proposed mesh point system is 3N^+ 7N - 7 as can be seen 

from Figures 10 through 13. 

In order to visualize the mesh point system clearly, the 

5x5 mesh point system is shown in Figure 14 through Figure 

17. As will be seen later, the 5x5 mesh point system is the 

one used in the actual numerical computations. 

Finite difference formulas (Central difference) 

Figures 18 and 19 illustrates some derivatives of a 

certain function Z. The double circles indicate the points 
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N 

N-

-Ct 

2N+2 3N+4 

2Nhl 3N--3 

q 3N 

N^+N-4 N2+2N-2 

N^+n-5 N^+ :IN-2 N2 + 3N-2 

N^+]I-6 N^ + :ÎN-4 I-3N-3 

-(F 

N+ i 2N N^-2 N 

N+ 3 2Nh5 N' -3 N 

N+2 2NI-4 N' 

N+1 2Nf-3 

•hN ^4- 2N+1 

KN-1 K2N 

4 N HN-2 f2N-l 

N^-5 N^ + SI-3 

Figure 10. Generalized mesh point system for u 
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N- L 2N 

2N+1 3N+3 4N+5 

N 2'! 3Nf2 4N-r4 

N 

Nr3 2Nf5 3Nh7 

1 3NH 4N-h3 

N+ 

2 2Nf4 3Nh6 

2Nt3 3N1-5 

L 2Nt-2 3NI-4 

N^+2N-3 N^+SN-l 

N^+ÎN-4 N^+ 

N^+ZN-S N^-f 

N^+n-1 

ÎN-2 N^+4N-1 

N^+II-2 

N^+lI-3 N^H 

.ÎN-3 N^+ lN-2 

>N+1 N2 + ,3N+2 

N^+lI-4 N^ + 

2N N^+ÈN+l 

2N-1 N^+îN 

(+N^=N -N2 

+3N-2) 

2N-2 

Figure 11. Generalized mesh point system for v 
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N--2 

2N-2 3N-2 

-Q-

2N-3 3N--3 

N^-N-2 

N^-ir-3 N^-4 

Ô-

Nhl 2N--1 

N 211 

N-1 2Nfl 

-0 

N^-ÈN+l 

Nr-2N 

N^- >N-1 

O 

NM-N 

(+N^=2N2 

+7N-3) 

-O 

Figure 12. Generalized mesh point system for w 
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N 2N 3N 

N-1 2N-1 3N 

N^-N 

N2-3-1 N' -1 

N+ 3 2N1-3 N^-2N+3 N^- >1+3 

N+2 2Nf2 N^-2N+2 NZ-0+2 

N+ L 2NH N^->N+1 N^-g+l 

Figure 13. Generalized numbering system for stresses 
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12 33 

Diagonal lins 

13 11 

Figure 14. Numbering system for u 
N = 5 
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4 ,  

M  

i 

r€ 

? 5  

3 

' 2  6 Î  

1 :  ? -

1  7  

3  

ji 8 2  

4  ) 4  (  11  6 1  /. )  8  .  

4  5 3  (  ̂  6-'  7  [  8 )  

4  

D i a g O ]  

i 9  6 1  

l a l  l i n e  

;  7  )  7  )  

/ 5 1  ; > 8  6 !  7  2  7  5 

0  

4'  

f 

I  5 0  5 7  6 '  7  L  

Figure 15. Numbering system for v 

N = 5 
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85 

84 

83 

90 95 100 
O 0 

-O 

_aa 

88 

87 
/ 

86 

93 

Di 
92 

98 

Diago 
97 

71 

:ial line 

91 

-O 

96 

ini 

102 

101 

-ô 

Figure 16. Numbering system for w 
N = 5 
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5 

4 

3 

Diagonal lin 

2 

1 

Figure 17. Numbering system for stresses 
N=5 
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- 2  

derivative 
9Ç 

derivative 

derivative 
9^Z 

-4 

derivative 
BE* 

derivative 
3Ç9T1 

derivative 
a ̂ z derivative 

9 ̂ Z 

acan 

Figure 18. Expressions for derivatives in terms of 
finite differences 
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derivative derivative 

an' 3n 4 

Figure 19. Expressions for derivatives in 
finite differences 
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where the derivatives are being evaluated. It is to be noted 

that the interval between two adjacent points in vertical or 

horizontal direction is always unity by virtue of the non-

dimensionalized coordinate system Ç and n defined in Equation 

Equations in terms of finite differences 

The basic equations shown in Equations 52 and, 54 or 56, 

and the boundary conditions shown in Equations 59 through 73 

can be expressed in terms of finite differences using the 

finite difference formulas mentioned above. The presentation 

of the whole equations in finite difference forms, is omitted 

here because of its bulkiness. 

The equations used can be divided into five major groups. 

They are; 

1. Equations of Equilibrium; 

2. Boundary conditions excluding those at corner points: 

50. 

In x-direction N^-4 equations 

In y-direction N^-4 equations 

In z-direction N^-4N+4 equations 

Along x = 0 2N-4 equations 

Along X = a 3N-6 equations 

Along y = 0 3N-6 equations 

Along y = b 3N-6 equations 
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3. Corner conditions: 

At (0,0) 2 equations 

At (0,b) 2 equations 

At (a,0) 4 equations 

At (a,b) 4 equations 

4. Conditions of zero net forces: 

Along X = 0 1 equation 

Along X = a 1 equation 

Along y = 0 1 equation 

Along y = b 1 equation 

5. Bending moment conditions: 

Along X = a 1 equation 

Along y = 0 1 equation 

Along y = b 1 equation 

Thus, the total number of equations is 3N^+7N-7. The boundary 

conditions used herein are those described in Equations 59 

through 73 with the exception of the corner conditions. 

Special conditions are required at corner points. They are 

explained in the next subsection. 

Corner conditions 

The corner points provide special conditions for the 

in-plane displacement components u and v. 
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At (0,0) At this corner point, the boundary conditions 

for both X = 0 and y = 0 should be satisfied. Thus, the first, 

second, fifth and sixth equations of Equation 35 would be 

necessary. The first equation has been satisfied, however, 

since u has been set to be zero along y = 0 already. The 

fifth equation is a fourth order equation and this fourth 

derivative can not be evaluated at the corner. Therefore, the 

necessary conditions are the second and the sixth equations 

of Equation 35. 

At (0,b) Similar to point (0,0), the necessary 

conditions at this point are the second and the eighth equa­

tions of Equation 35. 

At (a,0) Similar consideration as was done for point 

(0,0) indicates that for this point the third, fourth and 

sixth equations of Equation 35 are used. Furthermore, since 

edge x = a is where the external bending moment, M, is assigned, 

better accuracy is desired to insure the equilibrium of this 

corner point. It has been assumed that the stiffeners do not 

have curvatures in y-direction. Thus, the moment equilibrium 

of the small corner element requires that 

= 0 (74) 

This gives an additional condition for point (a,0). 

At (a,b) Similar to point (a,0), the necessary 

conditions at this point are the third, fourth and eighth 
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equations of Equation 35, and Equation 74. 

Computer programs 

Appendix C provides a brief summary of computer programs 

used in the proposed analysis. This set of computer programs 

consists of a main program and twelve subroutine subprograms. 

The most important part in the programs is the solution of 

simultaneous algebraic equations corresponding to each order 

of approximation. These equations are solved by UGELG which 

is a library subroutine subprogram based on Gauss Reduction 

Method. 
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CHAPTER THREE; NUMERICAL ILLUSTRATIONS OF THE PROPOSED 

ANALYSIS AND DISCUSSION OF THE ANALYTICAL RESULTS 

Description of Test Results Cited 

To illustrate the proposed analysis numerically, some 

test results on plate girders are analyzed and compared with 

the results from the proposed analysis and with other theories. 

The experimental data is taken from, first, WEB BUCKLING TESTS 

ON WELDED PLATE GIRDERS (5), second, PROOF-TESTS OF TWO 

SLENDER-WEB WELDED PLATE GIRDERS (22) and third, THEORY AND 

EXPERIMENTS ON THE LOAD CARRYING CAPACITY OF PLATE GIRDERS 

(28). Hereafter, the first and the second series of tests are 

referred as Lehigh Tests and the third one is referred as 

Japanese Tests for convenience. Twelve tests are cited from 

Lehigh Tests and three tests are cited from Japanese Tests. 

These test girders are divided into three basic groups: 

moment panels, shear panels and combined panels. 

1. Moment panels: These panels are mainly subjected to 

bending moment rather than shearing force. Seven girder panels 

are in this group. They are; 

Gl-Tl; G2-T1; G3-T1; G4-T1; G5-T1 from Lehigh Tests, and 

A-M; C-M from Japanese Tests. 

2. Shear panels; These panels are mainly subjected to 

shearing force rather than bending moment. Five girder panels 

are in this group. They are; 
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G6-T1; G7-T1; F10-T2; F10-T3 from Lehigh Tests, and 

B-Q from Japanese Tests. 

3. Combined panels: These panels are subjected to both 

bending moment and shearing force. Three girder panels are in 

this group. They are: 

G8-T1; G9-T1; FlO-Tl from Lehigh Tests. 

The description of the geometry and the mechanical 

properties of each of these girders is shown in Table 1. The 

cross sections of these girders are shown in Figure 20 and 

the loading setups are illustrated in Figure 21 through Figure 

25. Among the test girders cited, G3-T1 and G5-T1 are of 

different cross sections because these two girders have com­

pression flanges of tubular cross section. 

Calculation of the Parameters in Test Girders Cited 

All important parameters for the test girders cited are 

listed in Table 2. Parameters 6, a and Ç, y are different 

for each case of computation. It is noted that the parameter 

0 does not appear in bending cases and does appear in both 

shear and combined cases. 

Comparison of the Proposed Analysis with 

Test Results and with Easier's Theory 

The plate girders cited in the previous sections are 

analysed by the proposed analysis. The results from these 
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Table 1. Description of test girders 

Test Webplate 
Girder Type of Panel max 
No. Loading^ 

a 
dimension 

b h °Yw w 
o 

in. in. in. ksi in. 

Gl-Tl M 75.0 50.0 .270 33.0 .15 
G2-T1 M 75.0 50.0 .270 35.3 .17 
G3-T1 M 75.0 54.3 .270 33.7 . 16 
G4-T1 M 75.0 50.0 .129 43.4 .21 
G5-T1 M 75.0 54. 3 .129 45.7 .43 
G6-T1 S 75.0 50.0 .193 3 6 . 7  .29 
G7-T1 S 50.0 50.0 .196 36.7 .35 
G8-T1 C 150.0 50.0 .197 38.2 .28 
G9-T1 c  150.0 50.0 .131 44.5 . 15 

FlO-Tl c  75.0 50.0 .257 38.7 .11 
F10-T2 s  75.0 50.0 .257 38.7 .16 
F10-T3 s  60.0 50.0 .257 38.7 .05 

A-M M 120.0^ 120.0^ .450^ 28.0^ .30' 
B-Q S 120.0 120.0 .450 50.0 .30 
C-M M 120.0 120.0 .600 50.0 .30 

= moment, S = shear, and C = combined. 

^For Girders G3-T1 and G5-T1 in which the compression 
flanges are tubular, tg is the thickness of the hollow 
circular corss section, and d^ is the diameter. 

^For Japanese tests, lengths are measured in terms of cm. 

^For Japanese tests, stresses are measured in terms of 
kg/mm^. 

®For Japanese tests, loads are measured in ton. 
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Top flange Bottom flange 
Mode of 

tf ^Yf 

in. in. ksi in. in." ksi kips 

.427 20.56 35 .4 .760 12 .25 35.8 81.0 Torsion 

.769 12.19 38 .6 .776 12 .19 37.6 135.0 Lateral 

.328b 8.62b 35 .5 .770 12 .19 38.1 130.0 Lateral 

.774 12.16 37 .6 .765 12 .19 37.0 118.0 Lateral 

.328b 8.62b 35 .5 .767 12 .25 37.0 110.0 Lateral 

.778 12.13 37 .9 .778 12 .13 37.9 116.0 Diag. T 

.769 12.19 37 .6 .766 12 .19 37.6 140.0 Diag. T 

.752 12.00 41 .3 .747 12 .00 41.3 170.0 Diag. T 

.755 12.00 41 .8 .745 12 .00 41.8 96.0 Diag. T 

.997 16.05 28 .8 .998 16 .00 31.6 170.0 Diag. T 

.997 16.05 28 .8 .998 16 .00 31.6 184.5 Diag. T 

.997 16.05 28 .8 .998 16 .00 31.6 190.0 Diag. T 

1 .200° 24.00° 28 .0^ 1 .200° 24 .00° 28.0^ 46.5® Torsion 
1 .200 24.00 50 .0 1 .200 24 .00 50.0 76.0 Diag. T 
1 .200 24.00 50 .0 1 .200 24 .00 50.0 96.0 Torsion 
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Table 2. Calculation of parameters in test girders 

Test Type of 6=  <P 
f '^f 

t  
No. Loading b/a a/h 

s 

Gl-Tl Moment 0.667 278 0. 434 0 .460 0. 099 0. 099 

G2-T1 Moment 0.667 278 0. 463 0 .467 0. 099 0. 099 

G3-T1 Moment 0.724 278 0. 422 0 .464 0. 099 0. 099 

G4-T1 Moment 0.667 582 0. 971 0 .975 0. 207 0. 207 

G5-T1 Moment 0.724 581 1. 140 0 .971 0. 207 0. 207 

G6-T1 Shear 0.667 389 0. 653 0 .653 0. 138 0. 138 

G7-T1 Shear 1.000 255 0. 955 0 .954 0. 204 0. 204 

G8-T1 Combined 0.333 761 0. 305 0 . 3 0 3  0. 473 0. 473 

G9-T1 Combined 0.333 1145 0. 461 0 .455 0. 710 0. 710 

FIG-Tl Combined 0.667 292 0. 830 0 .830 0. 312 0. 081 

F10-T2 Shear 0.667 292 0. 830 0 .830 0. 081 0. 081 

F10-T3 Shear 0.833 234 1. 037 0 .036 0. 101 0. 101 

A-M Moment 1.000 267 0. 533 0 .533 0. 400 0. 400 

B-Q Shear 1.000 267 0. 533 0 .533 0. 400 0. 400 

C-M Moment 1.000 200 0. 400 0 .400 0. 300 0. 300 
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K  ^ex 
A, 
wcr 

A 
ex 
u 

6. 08 6 .  08 0 .474 0 .474 0.68 2.29 0 .139 0 .21 0 .242 

21. 00 21. 63 0 .474 0 .474 2.35 2.43 0 .157 0 .21 0 .378 

168. 40 21. 12 0 .476 0 .476 320.00 2.00 0 .148 0 .24 0 .381 

195. 20 189. 00 4 .350 4 .350 5.02 5.02 0 .407 0 .07 0 .563 

1536. 00 191. 90 4 .340 4 .340 669.00 4.17 0 .833 0 .08 0 .495 

59. 40 59. 40 1 .299 1 .299 3.40 3.40 0 .376 0 .08 0 .328 

79. 00 81. 60 1 .863 1 .863 11.00 10.90 0 .446 0 .11 0 .389 

25. 00 24. 40 23 .300 23 .300 0.37 0.37 0 .355 0 .11 0 .226 

85. 60 82. 60 78 .900 78 .900 0.56 0.55 0 .286 0 .04 0 .165 

69. 90 70. 00 6 .590 0 .670 7 .09 7.10 0 .108 0 .12 0 .342 

69. 90 70. 00 0 .670 0 .670 7.09 7.10 0 .157 0 .16 0 .371 

00
 

40 87. 40 0 .833 0 .833 20.00 20.00 0 .053 0 .19 0 .382 

21. 30 21. 30 8 .950 8 .950 2.60 2.60 0 .167 0 .22 0 .640 

21. 30 21. 30 8 .950 8 .950 2.60 2.60 0 .167 0 .10 0 .282 

8. 95 8. 95 3 .780 3 .780 1.95 1.95 0 .125 0 .19 0 .555 
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Gl-Tl 

G2-T1 
G4-T1 
G6-T1 
G7-T1 
G8-T1 
G9-T1 
FlO-Tl 
F10-T2 
F10-T3 
A-M 
B-Q 
C-M 

G3-T1 
G5-T1 

Figure 20. Cross sections of the tested girders cited 
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Figure 21. Test setup for bending panels: G1,G2,G3,G4,G5 
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Figure 22. Test setup for shear panels: G6,G7 
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P 

4'-2 

l'-6 

12'-6 12'-6 

Shear, S 

Moment, M 

P-75 

Figure 23. Test setup for girders under 
combined loading; G8,G9 
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Figure 24. Test setup for FlO girder 
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Figure 25. Test setup for shear and moment panels: A-M,B-Q,C-M (unit: cm) 
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analyses are presented herein with a view to finding out their 

correlation with the experimental results regarding the ultimate 

loads and the post-buckling behaviors of the test girder panels 

cited. 

In the proposed analysis, the solution of a single problem, 

either bending, shear, or a combination of the two, consists of 

solving four different sets of simultaneous linear algebraic 

equations step by step from the lowest order to the highest 

order. Seventeen parameters are required as the input data to 

handle a single problem. These parameters are: 

1. Type of loading; Bending moment, shear, or a 

combination of the two, 

2. Aspect ratio : X=b/a, 

3. Slenderness ratio of webplate: g=a/h. 

4. 4) g ! 

5. 

6. 

7. K '  

8. 4'f / 
(4 through 16 are 

9. 
rigidity parameters) 

10. 

11. 
' 

12. < f r  

13. 

14. a= o^/E , 
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15. , 

16. y=A/h 

17. Magnitude of load: A. 

After the problem is solved by the computer, the following 

results are printed in the computer output sheets for each 

mesh points on the webplate; 

1. a(l), u(2) and a(3), 

2. , v(2) and v^^^ , 

3. #(0), #(1), #(2) and 

ana 

5. 3y„, , 8^2' and , 

6- îxyo' ^xy'' îxy'' 

'• «bx'' Sbx ' 3bx 3bx'' 

3-  C '  

». 

10. u'^, 

11. 
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Tm m  m  m  r n  r n  m  m  m  
~ X  ^ X ~  X  ~  X  ~  X  ~  X  ~ X  ~  X  

^x' ̂ y' ̂ xy' %M' ̂ 1' °2' ^xl' ̂ yl' ^xyl' ^vMl' 

~T ~T ~T j ~T 
*x2' °y^' ^xy2 ̂  ^vM2 ' 

Ail solutions given in this chapter are based on 5 x 5 mesh 

point system. 

Analysis of panels subjected to bending 

Past experiments show that the load carrying capacity of 

deep plate girder panels subjected to pure bending moment is 

most frequently governed by buckling, such as vertical buckling 

of flange, lateral buckling of beam and torsional buckling 

of flange plate, rather than by the yielding of the webplates. 

Consequently, these modes of buckling should be checked 

to insure the stability of the plate girder panels (4,6,14, 20). 

The analysis of computed results from the proposed analysis 

of a bending girder panel consists of checking the above-

mentioned possibilities of local buckling as well as checking 

the yielding of the webplates. It is to be noted that the 

proposed analysis loses its validity when yielding occurs any­

where in a plate girder panel under investigation. The 

procedure for the analysis of computed results is summarized as 

follows; 

1. Evaluation of flange stresses using ù, 
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2. Investigation of the yielding of webplate using von 

Mises yield criterion: and 

3. Investigation of the possibility of vertical buckling 

of flange, 

4. Investigation of the possibility of lateral buckling 

of beam, 

5. Investigation of the possibility of torsional 

buckling of the compression flange. 

The buckling criteria used in this study are given in Appendix 

A. 

In each case, comparisons are made between the results 

obtained from the proposed analysis and the experimental values 

whenever these values are found useful and applicable regarding 

the post-buckling behaviors of girder panels such as load-o^ 

and load-a^ relationships. Furthermore, the simple beam theory 

is applied to find a possible indication of web-buckling in 

some of the plate girder panels cited. The simple beam theory 

assumes no web-buckling; in other words, web plates are assumed 

to keep their flatness during loading. 

For the purpose of predicting the ultimate loads for the 

cited plate girder panels. Easier's theory (4) is also used for 

comparison. A brief summary of his thepry has been presented 

in Chapter One. The format of the presentation of the 

theoretical results is demonstrated using cases 1 and 2 of test 

girder panel Gl-Tl. Thé results from all girder panels are 

presented in tables. 



www.manaraa.com

101 

Test girder panel Gl-Tl According to the test, the 

ultimate load is 81.0 Kips. This corresponds to = 0.242. 

Furthermore, the failure mode is the torsional buckling of 

the compression flange. Assuming that the webplate is simply 

supported along four edges, = 0.210. 

Computer result; Case ^ The maximum 

residual stress is assumed to be 0.5% of the yield strength 

of the webplate; while the maximum total initial deflection is 

assumed to be 10% of the webplate thickness. Then, 

a = 0.00000245; Ç = 0.00222; y = 0.025 

1. Flange stresses: In terms of finite differences, the 

flange stresses are given in the nondimensionalized form: 

Sj(or Sp = 1 (N-1) (ji) , 

where u^^^ and u_^ correspond to the displacement components in 

x-direction of the right and left points adjacent to the grid 

point concerned. Table 3 shows the stresses in flanges at 

A = 0.21. The average stress in the compression flange is 

-0.607. 

2. In-plane stresses: Stresses at various locations in 

the webplate are computed and listed in Table 4 for A = 0.21. 

The result shows that the webplate is not yielded at this load 

level. 
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Table 3. Computation of flange stresses: Case 1 of test 
girder panel Gl-Tl at A = 0.21 

Pt. u+i "_i "f °f 

1 0.0473 -0.0446 0.0919 0.603 
5 -0.0488 0.0460 -0.0948 -0.623 — — 

6 0.0930 0 0.0930 0.611 
10 -0.0961 0 -0.0961 -0.631 
11 0.1371 0.0473 0.0898 0.590 
15 -0.1416 -0.0488 -0.0928 -0.609 
16 0.1794 0.0930 0.0864 0.567 
20 -0.1853 -0.0961 -0.0892 -0.586 
21 0.2234 0.1371 0.0863 0.566 
25 -0.2308 -0.1416 -0.0892 -0.586 

Average stress in compression flange = -0.607 

Table 4. In-plane stresses: Case 1 of test girder panel 
Gl-Tl at A = 0.21 

Tm m m rn rn 
~ J. ~ X  ̂i. 25 ~ X 

No! ** y Yielding 

1 0 .6297 0 .1023 0 .0635 0 .5959 0 .6009 0 .5914 
5 -0 .6500 -0 .1058 -0 .0645 0 .6143 0 .6186 0 .6108 — —  

6 0 .6099 0 .0002 0 .0374 0 .6133 0 .6140 0 .6126 — —  

10 -0 .6224 -0 .0001 0 .0371 0 .6257 0 .6255, 0 .6260 
11 0 .5905 0 .0000 0 .0386 0 .5942 0 .5963 0 .5923 
15 -0 .5996 0 .0000 0 .0379 0 .6032 0 .6110 0 .5709 
16 0 .5671 -0 .0001 0 .0427 0 .5720 0 .5731 0 .5709 —  —  

20 -0 .5779 0 .0000 0 .0417 0 .5825 0 .5844 0 .5808 
21 0 .5913 0 .0964 -0 .0390 0 .5537 0 .5550 0 .5525 —  —  

25 -0 .6111 -0 .0996 -0 .0401 0 .5721 0 .5740 0 .5706 
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3. Vertical buckling of flange: Referring to Equation 

A.l, 6^ = 404; while 3' = 185. Therefore, This 

eliminates the possibility of vertical buckling. 

4. Lateral buckling: The lateral buckling length, 

is 100 in. The flange slenderness ratio, is 24.07 and the 

half width of the compression flange, c^, is 10.28 in. Then, 

2 gg = 48>12 + K^yc^ = 16.85. From Equation A.l, the torsional 

buckling is found to precede the lateral buckling. 

5. Torsional buckling of the compression flange: 

Referring to Equation A.5, y = 1.329; while = 1.002 by 

Equation A.6. Therefore, Yp<Y • Using Equation A.5, the 

buckling stress is: = ^cr-^^Yf^'^YF^^Yw LlÊ0_8. 

Previously, the average stress in the compression flange is 

found to be -0.607. Therefore, the buckling load is: 

In conclusion, the ultimate load is found to be 0.21 

and the failure mode is the torsional buckling of the compression 

flange. 

Computer result: Case ̂  The maximum residual 

stress is assumed to be 50% of the yield strength of the web-

plate; while, the maximum total initial deflection is assumed 

to be 10% of the webplate thickness. Then, 

a = 0.000245; ç = 0.222; y = 0.025 

1. Flange stresses: Table 5 shows the flange stresses 

at A = 0.18. The average stress in the compression flange is 
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-0.519. 

2. In-plane stresses: Table 6 shows the in-plane 

stresses at A = 0.18. Point 11 is found to be yielded at 

this load level. 

3. Vertical buckling of flange; 3^ = 335>3' = 185. 

This eliminates the possibility of the vertical buckling. 

4. Lateral buckling; 26^ = 48>12 + ̂  K^/c^ = 16.85. 

The torsional buckling precedes the lateral buckling. 

5. Torsional buckling of the compression flange; 

Y  =  1.329< Y p  = 1.414. Equation A.6 gives n = 1.35. There-

T 
fore, 0^^ = 0.567. Previously, the average stress in the 

compression flange is found to be -0.519. Therefore, the 

torsional buckling has not occurred at A = 0.18. A rough 

estimation of the ultimate load may be obtained by extending 

the elastic analysis beyond yielding load in the following 

manner; 

In conclusion, the maximum elastic load is found to be 

0.18. Beyond this load, the girder panel enters the elasto-

plastic range. The ultimate load is estimated as 0.197. 

assumed that the residual stress has its maximum value of 50% 

of the yielding strength of the compression flange. The 

0.567 
0.519 ~ 

0.197 . 

Easier's theory (4) In this theory, it is 
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Table 5. Computation of flange stresses: Case 2 of test 
girder panel Gl-Tl at A = 0.18 

X r  t  •  " W  " W  • V ' N »  « V  « % /  m  

NO. ^+1 ^-1 "+1-U_1 ^f '^f 

1 0.0405 -0.0384 0.0789 0.518 
5 -0.0418 0.0392 -0.0810 -0.532 
6 0.0797 0 0.0797 0.524 

10 -0.0822 0 -0.0822 -0.540 
11 0.1175 0.0405 0.0770 0.506 
15 -0.1212 -0.0418 -0.0794 -0.522 
16 0.1538 0.0797 0.0741 0.487 
20 -0.1586 -0.0822 -0.0764 -0.502 — — 

21 0.1915 0.1175 0.0740 0.486 
25 -0.1975 -0.1212 -0.0763 -0.501 — — 

Average stress in compression flange = -0.519 

Table 6. In-plane stresses: Case 2 of test girder panel 
Gl-Tl at A = 0.18 

Pt. ~T ;vT =T ~T ~T ~T 
No. X y xy vM vMl vM2 Yielding 

1 0 .5407 0 .0879 -0 .0494 0 .5098 0 .5111 0 .5086 — 

5 -0 .5549 -0 .0903 -0 .0593 0 .5258 0 .5260 0 .5256 — 

6 0 .8936 0 .0002 0 .0312 0 .8951 0 .8981 0 .8924 — 

10 -0 .1615 -0 .0001 0 .0319 0 .1706 0 .1695 0 .1723 — —  

11 1 .0009 0 .0000 0 .0327 1 .0025 1 .0089 0 .9968 yes 
15 -0 .0183 0 .0000 0 .0320 0 .0583 0 .0638 0 .0609 — 

16 0 .8574 -0 .0001 0 .0364 0 .8598 0 .8634 0 .8564 — —  

20 -0 .1237 0 .0000 0 .0354 0 .1380 0 .1355 0 .1412 — 

21 0 .5072 0 .0827 -0 .0335 0 .4749 0 .4747 0 .4750 — 

25 -0 .5232 -0 .0853 -0 .0344 0 .4899 0 .4912 0 .4888 — 
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B 
ultimate load is computed to be 73 Kips. Thus, = 0.218. 

The failure mode is the torsional buckling of the compression 

flange. 

Figure 26 shows a load-a^ relationship, and Figure 27 

shows a load-a^ relationship of girder panel Gl-Tl. 

Test girder panels G2-T1 through C-M Similar compu­

tations are performed on these girder panels and the results 

are presented in Table 7. Figures 28 through 30, Figure 31, 

and Figure 32 show, respectively, load-a^ relationships, 

load-a^ relationship, and a total deflection surface, of 

girder panel G2-T1. Figure 33 illustrates a total elastic 

deflection surface of girder panel G3-T1. Figure 34, and 

Figures 35 through 38 show, respectively, a load-a^ relation­

ship, and load-0^ relationships, of girder panel A-M. Figure 

39 illustrates distributions of 5^^ and and Figure 40 

shows a load-dj^^ relationship of the same girder panel. 

Figure 41 shows a total deflection surface and Figure 42 shows 

an in-plane displacement configuration of girder panel A-M. 

Figure 43 shows a relationship of load-flange strain, e^, and 

Figure 44 shows a load-q^ relationship for girder panel C-M. 

Analysis of panels subjected to shear 

Many experiments have shown that the ultimate load of a 

shear panel is always governed by the yielding of the webplate 

along diagonal line (See Figures 14 through 17). This 
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Table 7. Prediction of ultimate load for bending panels 

Girder Mode of^ (y) 
Failure 

Gl-Tl 0.242 0.210 T.B. 0.139 

G2-T1 0.378 0.208 L.B. 0.157 

G3-T1 0.381 0.240 L.B. 0.148 

G4-T1 0.563 0.073 L.B. 0.407 

G5-T1 0.495 0.080 L.B. 0.833 

A-M 0.640 0.220 T.B. 0.167 

C-M 0.555 0.186 T.B. 0.125 

^T.B. = Torsional buckling and L.B. - lateral buckling. 

refers to the maximum residual stress and is given by; 

a =0 for X>1 and a =o /X for X<1. r o = r o = 
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( y )  
Yw-^ th 

th 
cr 

f av 

. th 
max u 

0.005 0.025 1.00 0.21 0.21 0.22 
0.500 0.025 1.09 0.18 0.20 0.22 
0.500 0.139 1.21 0.18 0.22 0.22 

0.005 0.025 1.13 0.35 0.40 0.39 
0.500 0.025 1.80 0.20 0.36 0.39 
0,005 0.125 1.17 0.36 0.42 0.39 
0.500 0.157 1.94 0.20 0.39 0.39 
0.005 0.157 1.29 0.33 0.42 0.39 

0.005 0.025 1.08 0.39 0.42 0.37 

0.005 0.025 1.02 0.60 0.61 0.56 
0.005 0.125 1.50 0.39 0.59 0.56 

0.005 0.025 1.26 0.54 0.68 0.48 
0.005 0.100 1.57 0.42 0.66 0.48 

0.005 0.025 1.06 0.65 0.69 0.63 
0.125 0.025 1.09 0.64 0.70 0.63 
0.500 0.125 1.74 0.42 0.73 0.63 
0.500 0.025 1.54 0.45 0.69 0.63 
0.001 0.167 1.17 0.56 0.66 0.63 
0.125 0.167 1.74 0.36 0.63 0.63 

0.003 0.025 1.03 0.54 0.56 0.46 
0.150 0.125 1.52 0.33 0.50 0. 46 
0.003 0.125 1.03 0.48 0.49 0.46 
0.250 0.125 (2.36) (0.18) 0.43 0.46 
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0 . 1 3 9  
0 .  2 2 2  

1 5  0 . 0 2 5  
0 . 2 2 2  0 . 2 0  

0 .  1 5  
0 .  0 2 5  
0 . 0 0 2 2  

0 . 1 0  

computer result 

simple beam theory 

--O O- experimental 
0 . 0 5  

f 

0 . 4  -1.0 - 0 . 5  0 . 3  0 . 2  

Figure 26. Load - curve 

Test girder panel Gl-Tl 
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A=- M 

y=0.139:measured 
5 = 0 . 2 2 2  

. 2  
] j = 0  . 0 2 5  
Ç=0.222 

y = 0 . 0 2 5  

. 1  
computer result 

simple beam theory 

o- experimental 

0.4 0 . 5  0 . 3  0 . 2  0.1 0 

Figure 27. Load-o^ curve 

Test girder Gl-Tl 
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A= 
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ed U=0.157:measur 
I ç=0.0022 
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; = 0 . 2 2 2  

computer results 

simple beam theory 

-O o experimental 

-1.0 -0.5 0 

Figure 28. Load-ô^ curve 

Test girder G2-T1 
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Yw 

y=0.025 
ç=0.0022 

14 

computer results 

simple beam theory 

_0 o- experimental 

-0.5 -1.0 

Figure 29. Load-a^ curve 

Test girder G2-T1 
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Yw 

M=0.125 
ç = 0 . 0 0 2 2  

19 

y=0.157 
; = 0 . 2 2 2  

computer result 

simple beam theory 

experimental 

-0.5 1.0 0 

Figure 30. Load-a^ curve 

Test girder G2-T1 
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Yw M=0.157: measured value 
; = 0 . 0 0 2 2  

W=0.125 
ç = 0 . 0 0 2 2  

)j=0 .025 
;=0.0022 

]j=G .157: measured 
; = 0 . 2 2 2  

value 

15 

computer result 

simple beam theory 

_0 o- experimental 

f 
1.0 -0.5 0 

Figure 31. Load-ô^ curve 

Test girder G2-T1 
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- 2.0 

- 1.0 

G 

1.0 

T 
Figure 32. Total deflection w 

Test girder G2-T1; i i =0.125; ç=0.00222 
A=0.36 



www.manaraa.com

116 

T 
Figure 33. Total elastic deflection 

Test panel G3-T1; y=0.025; Ç=0.00262 
A=0.39 
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y=0.167rmeasured value 
ç=0.005 

15 

y=0.125 
ç=0.500 

computer results 

simple beam theory 

—O—"—"—"O" experiments 

0 -0.5 -1.0 

Figure 34. Load - flange stress curve 

Test girder A-M 
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y=0.167:measured value 
ç=0.005 

=0.167 

C=0.125 

computer results 

simple beam theory 

-0.4 -0.5 -0.3 -0.2 -0.1 0 

Figure 35. Load - curve 

Test girder A-M 
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A= 
ha 

. 6  

M=0.167:measured 
value 

ç=0.005 

0.4 

y=0.125 
ç=0.500 

computer results 0 . 2  

simple beam theory 

0.4 0.5 0 . 2  0.3 0 . 1  0 

Figure 36. Load - curve 

Test girder A-M 
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ç=0.005 

^1 = O. Ib7 

C = 0.125 

M=0.125 
Ç=0.500 

computer results 

simple beam theory 

-0.5 -0.4 -0.3 -0.2 -0.1 0 

Figure 37. Load - curve 

Test girder A-M 
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. 6  )j=0 .167 :measured value 
ç=0.005 ^ 

1J=0 .0 25 
ç=0.005 

. 4  
17 

O. 167 

O. 125 

2 

computer results 

simple beam theory 

0 . 2  0 . 3  0.4 0.1 0.5 

Figure 38. Load - 5^ curve 

Test girder A-M 
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0.5 -1.0 

xl 

-H x2 

•H 

0.5 1.0 

Figure 39. Distribution of 5^^ and 0^2 

Test girder A-M; y=0.025; ç=0.005 

A=0.65 
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] j = 0  . 0 2 5  
ç = 0 . 0 0 5  

y = 0 . 1 6 7  
ç = 0 . 0 0 5  

xb 

0 -0.1 0 . 2  

Figure 40. Load - bending stress curve 

Test girder A-M 
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w^/h 

2 . 0  

1.0 

0 

-1.0 

T 
Figure 41. Total deflection w 

Test girder A-M: y= 0.025; Ç=0.005 
A = 0 . 6 5  
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Figure 42. In-plane displacements u and v 
Test girder A-M: y=0.025; ç=0.005 
A=0.65 
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A=- M 

M=0.125rmeasured value 
ç=0.0025 

11=0 .025 
ç=0.0025 

15 

Vi=0 .125: measured 
ç=0.15 

computer result 

experimental 

p=0.125:measured vaTue 
;=0.25 — 5 

-1000 -2000 -4000 -3000 

Figure 43. Load-flange strain, curve 

Test girder C-M 



www.manaraa.com

127 

y=0.025 
^=0.0025 

19 

1J=0 ,125 : measured 
ç=0.0025 value 

0.125 
C-  0 .250  computer result 

simple beam theory 

-0.4 0 . 1  -0.3 0 . 2  -0.5 

Figure 44. Load - 5^ curve 

Test girder C-M 
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yielding is caused by a significantly large tensile stress in 

the direction of diagonal line D^. This phenomenon is 

ordinarily referred as a diagonal tension field action and is 

characterized by an outstanding bulge in the deflection surface 

along this diagonal line. Due to this buckled deflectional 

configuration of webplate it is generally believed that the 

minimum principal in-plane stress §2 does not increase too 

much with the increment of load along diagonal line D^; on 

the other hand, the maximum principal in-plane stress 

increases quite fast with the increment of load. 

The analysis of computed results based on the proposed 

analysis consists of checking the deflectional surfaces, 

checking the yielding of diagonal line D^, and investigating 

load-5^, relationships. The ultimate load of a shear gzrder 

panel is evaluated by finding the load at which interior points 

on diagonal line initiate yielding. The yielding is checked 

by using von Mises comparison stresses and -

Easier's theory (2) is used for comparison of the predicted 

ultimate strength. A brief summary of this has been presented 

in Chapter One. Overall behavior of a shear panel as predicted 

by the proposed theory is compared with simple pure shear case 

and with experimental data whenever available. The simple pure 

shear refers to the case of an ideal flat plate subjected to 

pure shear condition. 
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The format of the analysis of computed results for a 

shear panel is demonstrated using test girder panel G6-T1. 

Test girder panel G6-T1 The experiment ultimate load 

is 116 Kips. Thus, = 0.328. Assuming that the webplate 

is simply supported along four boundaries, = 0.077. 

Computer result: Case 1 The maximum 

residual stress is assumed to be 0.5% of the yield strength of 

the webplate; while the maximum total initial deflection is 

assumed to be 50% of the thickness of the webplate. Also, 

6=0. Then, 

a = 0.00000272; ç = 0.00222; y = 0.125; 0 = 0.0 

The in-plane stresses on diagonal line are listed in Table 8 

for A = 0.26. Table 9 shows the computation of the flange 

stresses at the same load level. Table 10 shows the computation 

of the stiffener stresses at the same load level. It is seen 

that the entire portion of diagonal is yielded at A = 0.26. 

Computer result; Case ̂  The maximum residual 

stress is assumed to be 0.5% of the yield strength of the web­

plate; while, the maximum total initial deflection is assumed 

to be 40% of the thickness of webplate. Also, 0=0. Then, 

a = 0.00000272; ç = 0.00222; y = 0.100; 6 = 0.0 

The in-plane stresses are shown in Table 11 for A = 0.26. Table 

12 shows the computation of the flange stresses at the same 

load level. Table 13 shows the computation of the stiffener 
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Table 8. In-plane stresses: Case 1 of test girder panel 
G6-T1 at A = 0.26 

PfT p-T p f T  

No. xy vM vMl vM2 1 2 Yielding 

7 0.5745 1.0192 1.1318 1.1608 0.7874 -0.3638 yes 

13 0.6226 1.0791 0.8593 1.3944 0.6495 -0.5962 yes 

19 0.5622 1.0095 1.0909 1.1960 0.5991 -0.5665 yes 

Table 9. Flange stresses: Case 1 of test girder panel 
G6-T1 at A = 0.26 

Pt. 
No, 

u +1 
u 
-1 "+1-U-1 

1 0.0800 0.0225 0.0575 -1.075 

5 -0.0865 0.1668 -0.2533 -1.075 

6 0.1344 0 0.1344 

10 -0.1626 0 -0.1626 -0.691 

11 0.1661 0.0800 0.0861 — 

15 -0.2144 -0.0865 -0.1279 -0.544 

16 0.1791 0.1344 0.0347 

20 -0.2462 -0.1626 -0.0836 -0.356 

21 0.1760 0.1661 0.0099 — — 

25 -0.2631 -0.2144 -0.0487 -0.207 

0.242 

0.572 

0.366 

0.148 

0.042 
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Table 10. Stiffener stresses: Case 1 of test girder panel 
G6-T1 at A = 0.26 

Pt. 
No. ^+1 V-1 9+1-9-1 ^s 

1 0.1156 0.1215 -0.0059 -0.038 T- — 

2 0.2129 0 0.2129 1.355 

3 0.2993 0.1156 0.1837 1.170 

4 0.3830 0.2129 0.1701 1.087 

5 0.3188 0.2993 0.0195 0.124 — —  

21 1.2623 1.2636 -0.0013 -0.0083 

22 1.2617 1.2567 0.0050 0.0318 

23 1.2538 1.2623 -0.0085 -0.0541 

24 1.2506 1.2617 -0.0111 -0.0707 

25 1.2576 1.2538 0.0038 0.0242 

Table 11. In-plane stresses: Case 2 of test girder panel 
G6-T1 at A = 0.26 

Pt. ~T %T ffT gT gT gT 
No. xy vM vMl vM2 1 2 Yielding 

7 0.5525 0.9814 1.0779 1.1159 0.7614 -0.3462 yes 

13 0.6280 1.0884 0.8765 1.3906 0.6491 -0.6070 yes 

19 0.5269 0.9509 1.0617 1.1706 0.5589 -0.5391 yes 
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Table 12. Flange stresses: Case 2 of test girder panel 
G6-T1 at A = 0.26 

Pt. 
No. *+l 3-1 *+l"*-l ^f ®f 

1 0.0760 -0.0249 0.1009 — — 0.423 

5 -0.0857 0.1345 -0.2202 -0.925 

6 0.1296 0 0.1296 0.544 

10 -0.1571 0 -0.1571 —0.660 

11 0.1602 0.0760 0.0842 — 0.354 

15 -0.2045 -0.0857 -0.1188 -0.498 

16 0.1727 0.1296 0.0428 — 0.180 

20 -0.2334 -0.1571 -0.0763 -0 .320 

21 0.1695 0.1602 0.0093 — 0.039 

25 -0.2479 -0.2045 -0.0434 -0.182 — — 

Table 13. Stiffener 
G6-T1 at 

stresses: 
A = 0.26 

Case 2 of test girder panel 

Pt. 
No. v+1 v_l 9+1-9-1 3s 3= 

1 0.0601 0 .0688 -0.0087 -0.055 — —  

2 0.1097 0 0.1097 0.690 — — 

3 0.1576 0.0601 0.0975 0.614 

4 0.2069 0.1097 0.0972 0.612. 

5 0.1748 0.1576 0.0172 0.108 

21 1.1420 1.1430 -0.0010 -0.0063 

22 1.1417 1.1367 0.0050 0.0315 

23 1.1350 1.1420 -0.0070 — — -0.0441 

24 1.1323 1.1417 -0.0094 -0.0592 

25 1.1385 1.1350 0.0035 — — 0.0220 
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stresses at the same load level. It is observed that the 

entire portion of diagonal line is yielded at A = 0.26. 

Figure 45 shows the flange stress distribution and Figure 

46 shows the stiffener stress distribution at A = 0.26. 

Figure 47 shows a load-stiffener stress curve. Figure 48 shows 

the deflectional shape of the webplate. 

Easier's theory (2) The ultimate load is 

computed to be 112 Kips. Thus, A^ = 0.317. 

Test girder panels G7-T1 through B-Q Similar compu­

tations are performed on these girder panels and the results 

are presented in Table 14. Figure 49 shows a load-o^, àg 

relationship of girder panel G7-T1. Figures 50 and 51 show 

the distributions of flange stresses and stiffener stresses, 

respectively for girder panel F10-T2. Figure 52 illustrates 

a deflectional surface of the same girder panel. Figures 53, 

54 and 55 show relationships of load-principal stresses, 5^ 

and 02f respectively, and Figures 56 and 57 show the distri­

butions of the maximum and minimum principal stresses, 

respectively, for girder panel B-Q. Figures 58 and 59 

illustrate a total deflection surface and an in-plane dis­

placement configuration, respectively, for the same girder 

panel. 

Analysis of panels subjected to both bending moment and shear 

Obviously, this case lies between two extreme cases, i.e., 

bending and shear cases. The load carrying capacity of a 
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Table 14. Prediction of ultimate load for shear panels 

Girder 4®== a«cr (u)^^ <"'th '^u ®ex «used 

G6-T1 0. 328 0. 077 Diag. T. 0. 376 0.005 0.125 0.26 0. 317 -0.667 -0.667 
0.005 0.100 0.26 0. 317 -0.667 -0.667 

G7-T1 0. 389 0. 105 Diag. T. 0. 446 0.500 0.025 0.44 0. 395 -1.500 -1.500 
0.500 0.025 0.45 0. 395 -1.500 -0.500 
0.005 0.100 0.36 0. 395 -1.500 -0.500 
0.005 0.125 0.32 0. 395 -1.500 -0.500 

F10-T2 0. 371 0. 159 Diag. T. 0. 157 0.005 0.125 0. 38 0. 364 0.214 0.214 Diag. 
0.005 0.125 0.40 0. 364 0.214 -0.500 
0.500 0.125 0.40 0. 364 0.214 0.214 

F10-T3 0. 382 0. 185 Diag. T. 0. 053 0.005 0.125 0. 40 0. 407 0.400 0.400 
0.005 0.100 0.42 0. 407 0.400 0.400 
0.500 0.053 0.34 0. 407 0.400 0.400 

B-Q 0. 282 0. 022 Diag. T. 0. 167 0.250 0.025 0. 30 0. 338 -1.167 -1.167 Diag. 
0.003 0.025 0.38 0. 338 -1.167 -1.167 
0.003 0.125 0.24 0. 338 -1.167 -1.167 
0.250 0.050 0.32 0. 338 -1.167 -0.500 
0.250 0.167 0.12 0. 338 -1.167 -0.500 
0.003 0.025 0.38 0. 338 -1.167 -0.500 
0.003 0.125 0.28 0. 338 -1.167 -0.500 
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0 

M=0.100 

y=0.125 

y=0.100 

IJ = 0.125 

Figure 45. Flange stress distribution at A = 0.26 
Test girder G6-T1: Ç=0.00222 

1.0 0 -1.0 

—I 1 1— 

^ 1J=0.100 

iL u-0.125 

Figure 46. Stiffener stress distribution at A = 0.26 
Test girder G6-T1: ç=0.00222 
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A= 

Yw 

.4 

y=0.125 
ç = 0 . 0 0 2 2  

.3 

. 2  

———— computer 
result 

—O O— experimental 

.1 

23 

0 -0.05 -0.10 

Figure 47. Load-stiffener stress a' curve 

Test girder G6-T1 
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w^/h 

Figure 48. Total deflection at A = 0.26 
Test girder panel G6-T1: y=0.125; 
ç=0.00222 
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1J = 0.100 M=0.125 

M=0.100 

U=0.125 

computer result 

simple pure 
shear 

0.4 0.3 -0.1 0.1 0 . 2  0 . 2  0 

Figure 49. Load-principal stresses, and à2 

Test girder panel G7-T1: ç=0.005 
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Of'Of 

— - 1.0 

- 0.5 

_0 

- -0.5 

+ - -1.0 

Figure 50. Flange stresses 
Test girder panel F10-T2 
V=0.125; Ç=0.00222; 0=0.2135 

+0.5 0 
1 

-0.5 

Figure 51. Stiffener stresses 
Test girder panel F10-T2 
U=0.125; 5=0.00222; 6=0.2135 
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w^/h 

1 . 0  

0.5 

0 

-0.5 

Figure 52. Total deflection surface at A=0.38 
Test girder F10-T2: y=0.125; 
ç=0.00222; 0=0.2135 
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A=T/a 

0.125 
0.0025 

0.100 
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y=0.025 
ç=0.0G25 

y=0.025;ç=0.0025 

p = 0JL25 ; C-0 j0025 

|j=0 .100; ç=0 . 25 

computer resuit 

simple pure 
shear 

°1'°2 

-0.4 -0.2 0 . 2  0.4 0 . 6  

Figure 53. Load-principal stresses, and Ô2 

Test girder B-Q 
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p= 0.100 
ç= 0.25 

y=0.100 
5=0.25 

computer result 

simple pure 
shear 

12 

0 . 6  0.4 0 0 . 2  -0.4 -0.2 

Figure 54. Load-principal stresses, and Og 

Test girder B-Q 
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=0.125;[=0.0025 

y=0.100;ç=0.25 

y=0.125 
ç=0.0025 

18 

-0.4 0 0 . 2  0.4 0 . 6  -0.2 

Figure 55. Load-principal stresses 
Test girder B-Q 
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Figure 56. Maximum principal stress distribution 5, at 
A=0.28 Test girder B-Q: u=0.125; 5=0.0025 

i % 
— 

% : 
Figure 57. Minimum principal stress distribution ^2 at 

A=0.28 Test girder B-Q: y=0.125; Ç=0.0025 
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Figure 58. Total deflection surface 
Test girder B-Q: y=0.125;ç=0.0025 
A=0.28 
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-0.5 _ 
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-j 1 u/h T 

.L. .L. J 

Figure 59. In-plane deformation u, v 
Test girder B-Q: y=0.025; ç=0.25; 6= 
A=0.32 

- 0 . 5  
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bending panel is governed by the strength of the compression 

flange; while that of a shear panel is governed mainly by the 

strength of the webplate. In panels subjected to both bending 

and shear, past experiments show that failure is attained 

when a portion of webplate in the direction of diagonal tension 

has yielded, although this failure is not as obvious as in case 

of shear. 

The prediction of the ultimate load in the combined case 

using the result of the proposed analysis consists of finding 

the load at which a certain region has yielded. It is seen 

that the mode of failure is not defined as clearly as for 

either bending or shear case. This is due to the nature of 

combination of two extreme cases. 

Test girder panel G8-T1 The experimental ultimate load 

is 170 Kips. Thus, 0.226. The failure mode is the 

yielding of the diagonal line D^. Assuming that the webplate 

is simply supported along four boundaries, ^^^r ~ 0•HO. The 

value of 0 is 0.0. 

Computer result: Case ̂  The maximum 

residual stress is assumed to be 0.5% of the yield strength 

of the webplate; while, the maximum total initial deflection 

is assumed to be 50% of the thickness of the webplate. Then, 

a = 0.000000708; ç = 0.000555; y = 0.125; 9 = 0.0 

Table 15 shows the in-plane stresses at A=0.300. Diagonal 
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line Dj^ is not completely yielded yet at this load level. 

Points 1 and 6 are yielded at this load level. 

Computer result ; Case 2 The maximum 

residual stress is assumed to be 0.5% of the yield strength 

of the webplate; while, the maximum total initial deflection 

is assumed to be. 80% of the thickness of the webplate. Then, 

a = 0.000000708; ç = 0.000555; y = 0.200; 0 = 0.0 

Table 16 shows the in-plane stresses at A = 0.24. Diagonal 

line is not completely yielded yet at this load level. 

A load-v curve, an in-plane displacement configuration, 

and a deflectional shape of the webplate all at A = 0.26 are 

shown in Figures 60 through 62, respectively. 

Test girder panel G9-T1 and FlO-Tl Similar compu­

tations are performed on these girder panels and the results 

are presented in Table 17. Figure 63 shows a load-v relation­

ship for girder panel G9-T1. 

Remakrs on the Feasibility of the Proposed Analysis 

Since the solution of von Karman's nonlinear partial 

differential equations is mainly based on the polynomial series 

and finite difference methods, it is necessary to show that the 

use of the polynomial series as well as the selection of 5 x 5 

mesh point system for finite differences result in reasonably 

good accuracy. The result of a study on the convergence of 
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Table 15. In-plane stresses: Case 1 of test girder panel 
G8-T1 at A=0.300 

Pt. 
No. ®VM 

gT 
°vMl 

CM 

4 Yielding 

7 0.4195 0.8190 0.8806 0.9776 0.6606 -0.2558 — 

13 0.4608 0.7982 0.7213 0.9512 0 .4657 -0.4560 — 

19 0.3560 0.6305 0.6704 0.6963 0 .3228 -0.4037 — 

1^ 0.1632 0.9966 1.0101 0.9849 1 .0942 0.2385 yes 

5^ 0.0767 0.9265 0.9384 0.9193 -0 .2522 -1.0265 — 

6^ 0.3256 0.9647 1.1442 0.9805 0 .9005 -0.1177 yes 

^Points not on Diagonal line D^. 

Table 16. In-plane stresses: Case 2 of test girder panel 
G8-T1 at A=0.24 

Pt. ~T gT gT gT gT gT 
No. xy vM vMl vM2 1 2 Yielding 

7 0 .3636 0 .7111 0 .9650 1 .0734 0 .5776 -0 .2166 yes 

13 0 .4454 0 .7721 0 .6748 1 .0263 0 .4495 -0 .4421 yes 

19 0 .3185 0 .5608 0 .6566 0 .7084 0 .2776 -0 .3678 — 

1^ 0 .2729 0 .9945 1 .0302 0 .9627 1 .0636 0 .1567 yes 

6^ 0 .2557 0 .8145 1 .2003 0 .9794 0 .7686 -0 .0851 yes 

^Points not on Diagonal line D^^ . 
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Table 17. Prediction of ultimate load for panels both in bending and shear 

Girder ^wcr '"'ex lô^^Jth '«'th \ « 

G8-T1 0.226 0.110 Diag. T. 0.355 0.005 0.125 0.30 0.0 

0.005 0.200 0.24 0.0 

0.500 0.025 0.34 0.0 

G9-T1 0.165 0.040 Diag. T. 0.286 0.005 0.125 0.20 0.0 

0.005 0.150 0.18 0.0 

FlO-Tl 0.342 0.120 Diag. T. 0.108 0.005 0.125 0.32 0.747 

0.500 0.125 0.26 0.747 

0.500 0.108 0.26 0.747 
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X 
Load, A=-— 

Yw 

.3 y=0.025 

]j=0 .125 

y = 0 . 2 0 0  
computer result 

experimental . 2  

.1 

v/h 

2 . 0  1.0 

Figure 60. Load-vertical displacement, v curve 
Test girder G8-T1: Ç=0.000555 
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v/h 

2 . 0  .  

Figure 61. In-plane displacement configuration 
Test girder G8-T1: y=0.1250; Ç=0.000555 
A=0.24 
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Load ^=~ 

y=0.125 0 .  

y=0.150 

computer result 

experimental 

0 .  

v/h 

5.0 4.0 3.0 2 . 0  0 

Figure 63. Load-vertical displacement, v curve 
Test girder G9-T1: ç=0.000555 
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the finite differences which is presented in Appendix B, shows 

that the 5x5 mesh point system gives sufficiently good con­

vergence to the problems considered in this study. 

Except for this, an analytical study of accuracy, how­

ever, is quite difficult because of the nonlinear nature of 

the problem. The only other way to establish the degree of 

accuracy would be by comparing computed results with available 

experimental results. 

It is found through this study that the initial deflection 

and the initial in-plane stresses are the least known parameters 

among many parameters considered. The accuracy of the measure­

ments of initial deflection, first of all, may be questioned. 

Besides, the initial in-plane stresses were not actually 

measured in any of the tests cited. Information on both of 

these parameters are needed in the proposed theoretical analysis. 

Thus, it is impossible to evaluate the accuracy of the method 

used in a quantitative manner. A discussion of accuracy from a 

qualitative viewpoint is given in the following based on the 

general correlation of the computed theoretical results with 

experimental data and with other theories. Various values of 

initial deflection and initial in-plane stresses are assumed 

for theoretical computation. 

The load-d^ relationships presented in Figures 27 through 

30 indicate that in general good correlations exist between 
i 

the proposed theory and the experimental results. The load-o^ 
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relationships presented in Figures 26, 31 and 34 and a load-e^ 

relationship presented in Figure 43 also indicate the same 

trend. Also, the deflectional shapes of webplates obtained by 

the proposed analysis are found to be governed by 2nd and 3rd 

order terms. The fact that these shapes are quite reasonable 

compared to the experimentally observed shapes suggests that 

the higher order terms are behaving properly. These good 

correlations indicate that the use of the polynomial series, 

as well as the use of the 5x5 mesh point system for finite 

differences are in general acceptable. 

It is unfortunate that most available and most reliable 

test data is the ultimate load capacity. Since the proposed 

theory does not take into consideration the inelastic behavior, 

the direct correlation of theory and experiment using the 

ultimate load is impossible. However, advantage is taken of 

this fact in developing a means to predict ultimate strength 

using the proposed elastic theory. This is discussed in a 

later subsection. 

Discussions on the Behavioral Results Obtained 
from the Numerical Computations 

In bending case 

Deflection surfaces shown in Figures 32, 33 and 41 

indicate a fact that the deflection of webplate in the com­

pression zone is more pronounced than that in the tension zone. 
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It is seen from these deflection surfaces, that the plate 

bending stress in this compression zone is quite significant. 

In-plane displacement configurations show typical 

cylindrical bending deformation of beam such as the one shown 

in Figure 42. It is seen that the upper flange undergoes 

compression and the lower flange undergoes elongation. 

Furthermore, it is interesting to note that the points which 

are on a vertical line before loading remain also on the same 

line with a slope, and that the mesh lines which intersect 

orthogonally before loading remain orthogonal after loading. 

Distributions of o in general are such that they are 

almost linear in the tension zone and fairly curved in the 

compression zone in the webplate as is shown in Figure 39. 

Also, it is seen that the plate bending stresses and 

are more significant in the compression zone. It may be 

explained that the reduction of in the compression zone is 

caused by the significant deflection of webplate in this zone. 

Load-average flange stress relationships in Figure 26, 

31 and 34, and load-average relationship in Figure 43 show 

that these are approximately linear. Furthermore, these 

relationships are found not significantly affected by the 

initial deflection. This is thought as quite reasonable, 

because flanges are tightly connected with the webplate so that 

the webplate deflection is small near the joints of the flanges 

and the webplate. 
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Load-a^ relationships shown in Figures 27, 28, 29, 30, 35, 

36, 37, 38 and 44 indicate in general that the portion of a 

webplate in the compression zone does not carry as much load 

as that in the tension zone does. In Figure 27, several 

computer solutions with different magnitudes of initial de­

flections and initial stresses all coincide approximately with 

the experimental values. The main reason is thought to be that 

the plate buckling load for this girder, Gl-Tl, is very close 

to the ultimate load so that the deflection of the webplate is 

not significantly large. In general, it could be observed 

that the larger the initial deflection is, the smaller a 

becomes in the compression zone. 

Figure D.l in Appendix D, and Figure 40 show 

diagrams in test girder panel A-M. In Figure D.l, both the 

2nd and the 3rd order approximations are shown for comparison. 

It may be seen that the 3rd order approximation is in better 

agreement with the experimental results with regard to the 

magnitude of and the general trend. 

The values of varies from nearly 1 to 8 in the 

test girders cited indicating the existence of a significant 

post-buckling range. 

In shear case 

Deflection surfaces shown in Figures 48, 52 and 58 

indicate outstanding oblique rise in the direction of Diagonal 

Dj^; furthermore, the deflection surfaces are of typical three 

half-waves peculiar to the shear problem. 
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In-plane displacement configurations show typical shearing 

deformation of beam as is illustrated in Figure 59. This 

figure is seen to be completely different from a bending de­

formation shown in Figure 42. 

Figures 56 and 57 show the distributions of principal 

stresses and - The existence of the diagonal tension 

field may be seen from these figures together with Figure 58. 

Load-ô^, 52 relationships shown in Figures 49, 53, 54 and 

55 show a general trend that the maximum principal stress 

tends to increase rapidly with load, while the minimum 

principal stress tends to creep with load. This trend is very 

prominent when the magnitude of initial deflection is large. 

Figures 45, 46, 50 and 51 illustrate boundary stress 

distributions, of which Figures 45 and 50 show the effect of 

beam bending on the flange stress Og, and Figures 46 and 51 

show the stiffener stresses. The accuracy of the computed 

stiffener stress is not as good as the in-plane stresses or 

the plate bending stress as shown in Figure 47. However, the 

same figure indicates the trend of load-stiffener stress 

relationship is fairly well represented. 

The values of A^^/A varies from nearly 2 to 10 
u wcr 

indicating the existence of a significant post-buckling range. 

Combined case 

An in-plane displacement configuration is shown in 

Figure 61. It is noted that this panel has large curvature 
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near the left edge and has little curvature near the right 

edge. This configuration is more or less the combination of 

the configurations illustrated by Figures 42 and 59. 

Figure 60 shows computed and experimental load-v relation­

ship. The trend of these curves coincides with that indicated 

in Figure 6. Figure 63 shows a relationship similar to 

Figure 6 0; however, in this case the relationship is almost 

linear for the range of A from 0 through 0.14. 

A deflectional surface is shown in Figure 62. It is seen 

that this surface is similar to those shown in Figures 4 8, 52 

and 5 8. 

The values of /^wcr varies from nearly 2 to 4 

indicating the existence of a significant post-buckling range. 
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Some Discussion on Effect of Parameters 

The main parameters involved in the proposed analysis are 

presented in Chapter Two. Furthermore, parameters for the 

tested girder panels cited in this dissertation are listed in 

Table 2. Since the number of parameters involved is con­

siderably large, study of all parameters leads to an enormous 

task. For this reason, and because of the lack of reliable 

information on initial deflection and residual stress, the 

effect of these parameters are studied. The effect of flange 

rigidity is also studied to some extent. 

Range of parameters in the test girder panels 

The maximum value and the minimum value of each parameter 

for the girder panels cited are indicated as follows: 

1. Aspect ratio. A: 0.33 - 1.000, 

2. Slenderness ratio, 3: 200 - 1145, 

3. Rigidity parameters 

(|)g: 0.305 - 1.140 

ip^: 0.303 - 1.036 

d) : 0.081 - 0.710 
^s 

(j)̂ ; 0.081 - 0.710 

ip^ : 6.08 - 1536.0 

il)̂ : 6.08 - 191.9 
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ip^: 0.474 - 78.9 

(pg : 0.474 - 78.9 

K^: 0.000068 - 0.0669 

K^: 0.000037 - 0.0020 

Effect of initial deflection 

Theoretical determination of the initial deflectional 

pattern is very difficult because many factors are involved in 

a sophisticated manner. Previous experiments have shown that 

the initial deflectional patterns are quite complex and, to 

some extent arbitrary. Figures 64 and 65 present sketches of 

the initial deflectional patterns for the test girder panels 

cited. It is seen that these patterns are quite complex and 

by no means systematic. Furthermore, in some experiments the 

test girders were repaired after previous tests. In these 

cases, the initial deflection patterns depend on the loading 

history (5). 

In all of the computations presented in this thesis, 

however, the initial deflectional pattern is assumed to be of 

a cosine wave shape as described by Equation 55. There are two 

main reasons for this assumption: First, previous experimental 

results indicate a fact that the most common initial deflecr 

tional shape is of one half wave in both x- and y-directions 

as seen from Figures 64 and 65. Secondly, flanges and 



www.manaraa.com

160 

(A-Q) 

/O 

A-M 

B-Q (B-M) 

(C-Q) C-M 

(A-Q') 

(B-Q') 

(C-Q') 

Figure 64. Sketches of total initial deflections for 
Japanese test girder panels 
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G2-T1 G3-T1 

F10-T3 

Figure 65. Sketches of total initial deflections for 
Lehigh test girder panels 
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stiffeners can be considered not to deform significantly before 

loads are applied. By virtue of Equation 55, flanges and 

stiffeners have zero initial deflectional slopes. 

It has been assumed in the proposed analysis that the 

total initial deflection, w^, consists of the initial elastic 

deflection, and the residual deflection of unknown 

nature. The solutions of the zero order equations indicate 

that the ratio of the initial elastic deflection, to the 

total initial deflection, , is approximately 0.3 for ordinary 

plate girder panels when the maximum initial stress, a^, is 

one-half of the yield strength of webplate, 

The solutions of the higher order equations indicate that 

when the total initial deflection is 50% of the thickness of 

the webplate, the ratio of the bending stress component to the 

in-plane stress component at a point on the webplate can be as 

high as 40%. It is also found that the larger the initial 

deflections are, the larger the total deflections become, and 

that the in-plane displacement components u and v are not as 

significantly affected as deflection w is by the magnitude of 

the initial deflection. 

Effect of initial in-plane stresses 

In the proposed analysis, the distribution of the initial 

in-plane stresses, or residual stresses, has been determined 

V 
by modifying that developed by Skaloud and Donea (25) . Easier 
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and others assume that the maximum residual stress, a , is 
r 

approximately 50% of the yielding strength of steel (4,6). 

References 10 and 26 suggest that this percentage be lowered 

for high strength steel. In particular. Reference 28 assumes 

this percentage to be 50% for ordinary carbon steel and 25% 

for high strength steel. 

The result of the analysis shows that larger residual 

stresses result in smaller yielding loads as expected. In 

bending problem, the magnitude of is found to be very sig­

nificant with regard to the load at which a panel starts 

yielding. On the other hand, in shear problem, the maximum 

residual stress is found to have less significant effect 

V 
with regard o the yielding load. Skaloud and Donea concluded 

in Reference 25 that the residual stresses, generally harmful, 

may in some cases, represent a real prestressing of webplates 

subjected to shear. This seems to agree with the statement 

just mentioned above. 

Effect of flange rigidities 

In order to see the effect of rigidities of flanges, a 

cover plate of 22 cm x 0.6 cm is assumed to be welded on top 

of both upper and lower flanges of test girder panel A-M. 

The rigidity parameters become larger than before and are 

given as follows: 
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= 0.778; (j)̂  = 0.778, 

= 23.7; = 23.7, 

Kg = 0.008; K g = 0.008. 

The result of analysis shows that the ultimate load, is 

now 0.95 compared with 0.69 obtained previously. Therefore, 

the ultimate load is considerably improved by reinforcing 

flanges as can be expected. Since the buckling load of web-

plate remains essentially the same, larger ultimate load 

implies larger postbuckling strength. 

Next, a shear girder panel is considered. Girder panel 

F10-T3 is chosen for this purpose. First, the thickness of 

the flanges is doubled. Then, 

4) g = 2.074; (j)̂  = 2.073; = 699.2; = 699.2 

Kg = 0.0160; K^ = 0.0160. 

The analytical result shows that the ultimate load, is 

now 0.42 compared with 0.40 obtained previously. Secondly, 

the thickness of the flanges is quadrupled. Then, 

(j)g = 4.148;  ̂g = 4.144; = 5593.6; = 5593.6 

Kg = 0.1280; K^ = 0.1280. 
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However, the analytical result shows that is still 0.42. 

This implies that excessive reinforcement on flanges does not 

lead to significant improvement on the load carrying capacity 

of girder panels in shear. In this respect, it is found that 

the flanges in the shear panels behave quite differently 

from flanges in the bending panels. 

Prediction of Ultimate Load by the Proposed Analysis 

A good correlation is found in the prediction of the 

ultimate load between the results from the proposed analysis 

and the experimental results when the maximum total initial 

deflection is assumed to be 10% of the thickness of webplate 

in the bending problem and 50% of the same in the shear 

problem, respectively, while initial in-plane stress is 

assumed to be negligibly small. It is also found that use 

of these assumed parameters results in good prediction of the 

post-buckling behavior. Table 18 shows the ultimate loads 

for the tested girder panels cited when the initial deflections 

and initial in-plane stresses are assumed as mentioned above. 

No similar correlation is given in the combined loading cases 

because of insufficient data. 
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Table 18. Prediction of ultimate load 

Girder Type of Easier-s Proposed 

Panel Loading 

Gl-Tl Moment 0.242 0.218 0.210 

G2-T1 Moment 0.378 0.394 0.400 

G3-T1 Moment 0.381 0.370 0.420 

G4-T1 Moment 0.563 0.562 0.610 

G5-T1 Moment 0.495 0.479 0.680 

A-M ' Moment 0.640 0.629 0.690 

C-M Moment 0.555 0.464 0.555 

G6-T1 Shear 0.328 0.317 0.260 

G7-T1 Shear 0.389 0.395 0.360 

F10-T2 Shear 0.371 0.364 0.380 

F10-T3 Shear 0.382 0.407 0.400 

B-Q Shear 0.282 0.338 0.280 
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Initial Residual Theoretical 
Deflection Stress Failure 

u ^ ^r^^Yw 
Af^ U o /o^ Mode 

0.87 0.025 0.005 Torsional B. 

1.06 0.025 0.005 Lateral B. 

1.10 0.025 0.005 Lateral B. 

1.08 0.025 0.005 Lateral B. 

1.37 0.025 0.005 Lateral B. 

1.08 0.025 0.005 Torsional B. 

1.00 0.025 0.003 Torsional B. 

0.79 0.125 0.005 Diag. Tens. 

0.93 0.125 0.005 Diag. Tens. 

1.02 0.125 0.005 Diag. Tens. 

1.05 0.125 0.005 Diag. Tens. 

0.99 0.125 0.003 Diag. Tens. 
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CHAPTER FOUR: SUMMARY AND CONCLUSIONS 

Summary 

A theoretical approach to the postbuckling problem of 

plate girder webplates is proposed and presented in this 

dissertation. 

The purpose of the study is described and its signifi­

cance in the light of past investigations is explained in 

Chapter One. 

The basic concept, assumptions and the detailed method 

of approach to the problem are described in Chapter Two. The 

main feature of the proposed analysis is the use of a method 

similar to perturbation method as well as the finite difference 

method in solving a set of von Karman*s nonlinear partial 

differential equations. 

A number of tested plate girder panels are reviewed and 

the comparison is made between the results from the proposed 

analysis and the experimental results in Chapter Three. Based 

on this comparison, the accuracy of the proposed analysis as 

well as the effect of parameters such as initial deflection, 

residual stresses and flange rigidities, are studied. To 

conclude the Chapter, prediction of the postbuckling behavior 

and the ultimate strength by means of the proposed analysis 

is discussed. 
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Conclusions 

Fairly good agreement is found between the proposed 

theoretical analysis and the experimental results cited. This 

proves the validity and general accuracy of the proposed 

analysis. The mechanical model considered herein proves to be 

a satisfactorily good representation of the actual girder 

panels. The method of approach, especially the use of a 

perturbation method and a finite difference method, proves to 

be quite applicable. 

Following conclusions are drawn based on the analysis of 

computed results presented in Chapter Three. 

1. The larger the initial deflection is, the larger the 

final deflection becomes. The in-plane displacement components, 

however, are not significantly affected by the initial 

deflection. 

2. Larger initial deflection causes more curved load-

displacement and load-stress relationships. 

3. The pattern of the initial deflection does not 

necessarily cause a similar deflectional shape in the webplate 

due to load. 

4. Larger boundary rigidity leads, in general, to more 

stable behavior of the panel in the post-buckling range. 

However, excessive reinforcement of the boundary members does 

not prove to be beneficial in the case of shear problem. 
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5. The larger the yield strength of the steel is, the 

larger the post-buckling strength becomes. 

6. The ultimate load carrying capacity of a bending 

panel is controlled by torsional buckling of the compression 

flange, or lateral buckling. 

7. The ultimate load carrying capacity of a shear panel 

is controlled mainly by the yield strength of webplate. The 

mode of failure is the formation of diagonal tension field. 

8. The ultimate load carrying capacity of a panel in 

shear and bending combined is controlled by the yielding in 

the diagonal tension action rather than lateral or torsional 

buckling. 

9. The larger the residual stresses are, the sooner the 

webplate initiates yielding. 

10. Good prediction of ultimate loads and post-buckling 

behavior of girder panels can be obtained by the proposed 

theory using the following values for the initial deflection 

and the residual stresses: 

Maximum residual stress, negligibly small=0.005 

or less 

Maximum total initial deflection, w i 
omax 

0.1 h for bending panels 

0.5 h for shear panels. 
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Recommendation for Future Study 

The proposed method of analysis limits itself to elastic 

behavioral study of plate girder panels. This restriction 

makes the prediction of the true load carrying capacity in­

complete, since in most cases, the behavior of plate girder 

panels is elasto-plastic after certain loading levels. 

Among parameters influencing the behavior of girder 

panels, two parameters deserve more extensive study. One is 

the initial residual stress distribution, and the other the 

initial deflection. In future experimental work, the more 

detailed study of these two parameters is highly recommended. 

In summary, the following items are recommended for 

future work: 

1. Elasto-plastic analysis making use of the plasticity 

laws and the large deflection theory of plates, 

2. Investigation of initial stress due to welding in 

terms of its magnitude and distribution, and its effect on 

the post-buckling behavior of girder panels, 

3. Investigation of initial deflection in terms of its 

causes, distribution shapes and magnitude as well as its 

effect on the post-buckling behavior of girder panels. 
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APPENDIX A; CRITERIA FOR BUCKLING 

Vertical Buckling of Flange 

When a plate girder is bent, the deflectional curvature 

gives rise to transverse flange force components. As a 

result, a uniform compressive stress acts on the upper and 

lower edge of the webplate through the flanges. Therefore, 

it is possible for this compressive stress to cause the web­

plate to buckle just like a column. It has been found (4) 

that if the webplate has a slenderness ratio 3' less than the 

following value: 

3 =/ ^ = 0.673 E ^ , (A.l) 
V 24(1-^2) ^f GfCf y *f 

then, it is safe against the vertical buckling of flange. 

Lateral Buckling of Girder 

When a plate girder is subiected to bending, this mode 

of failure sometimes governs the strength of the girder. The 

mode of failure is such that the whole cross section of the 

girder rotates about the axis of the' tension flange. A 

typical buckling curve is shown in Figure A.l (4). This 

curve is based on the maximum value of residual stress = 

0.5 Oyg. Curve I is a transition curve from an Euler's 
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°cr/°Yf 

Curve I 

Curve II 

1.0 Y 2 . 0  

Figure A.l. Lateral buckling curve 
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buckling curve and reflects the significant effect of residual 

stress. Curve II is the Euler's buckling curve. For this 

case of maximum residual stress = 0.5 the buckling 

stress is obtained by Easier (4) as follows; 

—̂  = 1 - —-j- for 0 < Y < y = / 2 ~  
4 — p 

<?Yf 

1 for Y > y - /T" 
— P , 2  

where 
(A.2) 

Y = %  / ! l =  k /  ^  

TT^ TTV f 

However, for some different value of the maximum residual 

stress, a^, a different transition curve should be used. It 

is reasonable to assume this transition curve in the following 

general form (14). 

 ̂= 1 - (-1)̂  (A.3) 

°Yf °Yf Yp 

The term on the left assumes a value of 1.0 when y = 0, and 

1.0 - when Y = Yp» It is required that the Euler's 

curve and the transition curve intersect and their tangents 

be the same at Y = Yp» From these two conditions, the power 

index n and the parameter Yp are determined as follows (14): 
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To = , and 
/i.o -

n = 2 (Oyg/a^ - 1) (A.4) 

Torsional Buckling of Compression Flange 

This failure is also one of the typical failures in plate 

girders subjected to bending moment. The compression flange 

by itself buckles as a platç in this failure. Similar to the 

case of lateral buckling, the buckling stress can be obtained 

as follows (14): 

!££ = 1 - ̂  for Yo<Y<Y 

*Yf *Yf Tp-Yo 

= 1/Y^ for Y>Yp 

P 

where 

c / 12(l-v:)e 
Y = — / ^ (A.5) 

f J TT^K 

with the value of K suggested to be taken as 0.425 (4). It is 

required that the Euler's curve and the transition curve 

intersect and their tangents be the same at y = From these 

conditions, y^ and n are determined as follows (14); 
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ïp = 1/Vl.O-o^/ayg , and 

n = 2 (A.6) 

It is suggested that the value of be taken as 0.46 (4). 

Figure A.2 provides a typical torsional buckling curve. 

Curve II is the Euler's buckling curve, and Curve I is the 

transition curve. 

In order that the torsional buckling precedes the lateral 

buckling of girder the following inequality should be satisfied 

(4): 

23f > 12 + 

where = Cg/t^ 

= lateral buckling length (A.7) 
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Figure A.2. Torsional buckling curve 
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APPENDIX B; CONVERGENCE CHECK WITH RESPECT TO 

DIMENSION OF MESH POINT SYSTEM 

Choice of 5 X 5 Mesh Point. System 

The computer program developed in this study is generally 

applicable for any dimension of mesh point system, N. In 

Chapter Three, the computations are based on 5 x 5 mesh point 

system. In this appendix, it is shown that the choice of 

N = 5 is a good representation of the mechanical model used 

in the study. It is true that the larger the value of N, the 

more accurate the solutions get. On the other hand, the 

value of N should be determined so that the solution yields 

reasonably good accuracy and yet does not require excessive 

computer time. 

The convergence for the zero order equation is studied 

first. This is followed by the convergence study for the 

higher order equations. 

Zero order equation 

Equation 52 is solved repeatedly by varying the value of 

N. The parameters used for this purpose are as follows; 

a = 0.000667; ç = 0.5; y = 0.67; X = 1.0; 3 = 266.7 

= 21.3; = 21.3; ip^ = 10.8; tl'g = 10.8 

The result of the convergence study is presented in Figure B.l. 

Judging from the convergence curve, the true value for the 
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a=0.0007 
Ç=0 .5 
p=0.67 
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Figure B.l. Convergence curve for maximum 



www.manaraa.com

184 

(0) 
maximum w would be 0.299 by observation. The convergence 

is obtained in the following manner; 

N  4 5 6 7 8 9  1 0  1 1  

w^O) 0.167 0.436 0.284 0.345 0.286 0.315 0.286 0.301 
max 

w^°V.299 0.559 1.460 0.950 1.155 0.957 1.055 0.957 1.008 
max' 

Therefore, the use of the 5x5 mesh point system overestimates 

the true solution by 46% error. The use of the 7x7 mesh 

point system overestimates the true solution by 15.5% error. 

Although the zero order approximation yields 46% of error on 

the 5x5 mesh point system, the solution w^^^, however, 

affects only the zero order plate bending stress components. 

The contribution of the zero order plate bending stress com­

ponents is less than 10% of the total plate bending stresses. 

Higher order equations 

The convergence check is done for Girder A-M, a girder 

in bending; and for Girder B-Q, a girder in shear. 

Girder A-M in bending The parameters used are as 

follows : 

a = 0.00000667; ç = 0.005; y = 0.167; A = 1.000 

3 = 267; (j)j = 0.533; c}) ̂  = 0.533; (j)^ = 0.400; = 0.400 

ipf = 21.3; = 21.3; = 8.95; = 8.95; = 8.95 
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Figure B.2. Load-a^ curve: Test girder panel A-M 
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N=6 
N=7 

0 

N=7 
N=4 0 

0 

N=5 N=6 0 

N=4 

0 

v/h 

0 

0 . 6  0.5 0.4 0.3 0 . 2  0.1 0 

Figure B.3. Load-v curve: Test girder panel A-M 
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A = M 

N=7 

N=5 
N=6 

N=6 

N=7 

N=4 

N=4 N=5 
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Figure B.4. Load-deflection curve; Test girder panel A-M 
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values of N. It is found that the 4x4 mesh point system 

is too coarse and the results are far off from those results 

for N = 5. It is seen that the 5x5 mesh point system is a 

fairly good representation. 

Girder B-Q in shear The parameters used are as 

follows : 

a = 0.00000595; ç = 0.0025; y = 0.025; 6 = 0.1667 

X = 1.00; 3 = 266.7; (j)^ = 0.533; (j)^ = 0.533; (J)^ = 0.400 

= 0.400; = 21.3; = 21.3; = 8.95; = 8.95 

= 0.00026; K ̂  = 0.00026 

Figure B.5 shows the convergence of the von Mises comparison 

stresses, and It is seen that 5^^ converges 

very rapidly. Figure B.6 and Figure B.7 show the convergence 

for the in-plane displacement component, v. Figure B.7 shows 

that the 5x5 mesh point system is a good representation. 

Figure B.8 shows the convergence of the deflection, w. Results 

for N=4 and N=6 are not presented because of the fact that the 

central point is not included in these mesh point systems. 

Fairly good convergence is observed. 
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Figure B.5. Convergence of von Mises stresses, 5^^, 
5 and a at the center of the 
vMl vM2 

webplate Loading": shear 
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Figure B.6. Load-displacement v curve 
Convergence check Loading: shear 
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Figure B.7. Convergence curve for v 
Test girder B-Q at A=0,30 
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Figure B.8. Convergence for deflection w at the center 
of webplate Loading: shear 
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APPENDIX C: COMPUTER PROGRAMS 

General Remarks 

The computer programs used in this study consist of a 

main program and 12 subroutine subprograms. The computer 

program flow chart is shown in Figure C.l. The subroutine 

subprograms are shown in capitalized letters in this figure, 

except for UGELG, which is a library subroutine subprogram 

for solving a set of simultaneous equations by means of 

Gauss Reduction Method, each program is explained in the 

following. 

Main program 

This program serves as a medium by which subroutine 

subprograms are organized and input-output jobs carried out. 

It calls UGELG four times to solve sets of simultaneous 

algebraic equations. 

Input The input data consists of four cards and 

includes the following quantities: 

1. First card; 

ALPH (a); ZETA (Ç); AM (y); AN (v); TH (9); AL (X); 

BET (8), 

2. Second card: 

FF FFl (4>f); FS (*g); FSl ((p^). 
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Start 

Read Input 

Solve Zero Order 
Equation^^ ZEROS RSTRS 

HMEQE EQUIL Solve 1st Order 
Equation 

BRCND 
Evaluation of 

Const, and Stresses 

/I 

Solve 2nd Order 
Equation 

SINIT 
CMAIN 

EVCST 
Evaluation of 

Const, and Stresses 
CCMAI CSRNS 

STRS 

Solve 3rd Order 
^ Equation^^ggg^ 

BENDS 

Evaluation of 
Stresses 

Library Subroutine Subprogram Print Output 

Stop UGELG 

Solution of simultaneous 
equations by Gauss Reduction 
Method 

End 

Figure C.l. Computer program flow chart 
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3. Third card: 

PF (^g); PFl (ipp; PS PSl (4^); AKF (K^) ; 

AKFl (K^), 

4. Fourth card; 

N; LEVEL; AMINL; ILD; :^NLD; KMAX, 

where N = Dimension of mesh point system 

LEVEL = Number of load levels 

AMINL = Minimum load level, also used as load increment 

ILD = Index showing the type of loading; 1 for shear 

or combined case, 2 for bending case 

INLD = Index for the initial load level, usually 1 

KMAX = Maximum order of approximation, usually 4 

Output The output has been explained in Chapter Three. 

Subroutine CMAIN 

This program is a continuation of the main program and 

serves to evaluate derivatives for 2nd and 3rd order constants 

of simultaneous equations and to evaluate stresses along 

boundaries excluding those at corner points. 

Subroutine CCMAI 

This is also a continuation of the main program and 

serves in the same way as CMAIN except that this is for corner 

points. 
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Subroutine HMEQE 

This forms matrix elements of simultaneous equations for 

the higher order equations of equilibrium. 

Subroutine BRCND 

This forms matrix elements of simultaneous equations for 

the higher order boundary conditions. 

Subroutine ZEROS 

This solve zero order equations. 

Subroutine RSTRS 

This program is for the evaluation of residual stress 

components. 

Subroutine STRS 

This program is for the evaluation of the in-plane stress 

components. 

Subroutine BENDS 

This program is for the evaluation of the bending stress 

components. 

Subroutine EQUIL 

This program is for the formation of linear operators for 

the equations of equilibrium for higher orders. 
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Subroutine EVCST 

This program is for the detailed evaluation of constants 

of simultaneous equations for higher orders. 

Subroutine SINIT 

This program is for the initialization of constants and 

stresses. 

Subroutine CSRNS 

This program serves as a coordinator between SINIT, EVCST, 

STRS and BENDS. 
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APPENDIX D: DISCUSSIONS ON THE EXPANSION OF DISPLACEMENT 

COMPONENTS IN TERMS OF AN ARBITRARY PARAMETER 

Discussions 

In this thesis, the unknown displacement components u, v 

aid w are assumed to have the form of power series of order 

three as shown by Equation 22. Consequently, the in-plane 

stress components and the plate bending stress components 

are also expressed in the form of power series of order three. 

If u^^), and w^^^ are not considered as Equation 41 shows, 

then the expressions of stresses should include no third 

power, either. 

In this section, the significance of the third order power 

terms are investigated by comparing two approximations, the 

second and the third approximations. The second approximation 

considers the terms only up to the second powers; on the other 

hand, the third approximation also takes into account the 

third powers. The contribution of each term is evaluated as 

follows ; 

—T 
Suppose, is to be considered. Then from Equations 1 

and 2 3, 

The contribution of the k-th power (k = 1,2,3) is evaluated by 

the following quantity: 
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I " ™  + i° r '  

For all three types of loading considered in this thesis, 

the following results are found to be true; 

1. The contribution of the 3rd power terms in the in-

plane displacement components u and v is usually less than 10% 

of the total of the 1st through the 3rd power terms. 

2. The contribution of the 3rd power term in the 

deflection w can be sometimes as high as 30% of the total 

T 
deflection w . Furthermore, the 2nd power terra of w is 

usually the greatest for webplates with relatively long post-

buckling range and zero power term is the greatest for web­

plates with large initial deflection and relatively short range 

of post-buckling. 

3. The contribution of the 3rd power terms in the in-

plane stress components cT^, and is usually small, say, 

less than 5% of the total of zero through the 3rd power terms. 

Furthermore, the 1st power terms are usually greater than the 

2nd and 3rd power terms. 

4. The contribution of the 3rd power terms in the plate 

bending stress components o^^., and is approximately 

in the same order of the 1st and 2nd power terms. By retaining 

these 3rd power terms better agreement with the experimental 

results can be obtained. Figure D.l shows a comparison between 

the 2nd and the 3rd order approximations for test girder A-M. 
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It is seen that the 3rd order approximation is in better 

agreement with the experimental results. Similar remarks can 

be made with the other test girders cited in this thesis. 
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P, ton 
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2nd 

30 

Experimental 

3rd Approximation 

2nd Approximation 
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Figure D.l. P - relationship: Test girder A-

2nd and 3rd order approximations 
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