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NOTATION
Distance between vertical stiffeners or
panel length

Amplitude of total initial deflection at
the center of plate

Cross sectional areas of upper and lower
flanges, respectively

Cross sectional areas of left and right
stiffeners, respectively
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Half width of the compression flange

Widths of the upper and lower flanges,
respectively

Flexural rigidity of plate
Modulus of elasticity of steel
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Functions of w where k

Thickness of webplate

(k)

Functions of w where k = 1,2,3

Flexural rigidities in y-direction of
upper and lower flanges, respectively

Torsional rigidities of upper and
lower flanges, respectively

Torsional rigidities of left and right
stiffeners, respectively

Lateral buckling length

Bending moment
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X, Yr 2

B, B'

Dimension of the mesh point system
Load

Buckling load
Ultimate load

Shearing force on a beam

Thicknesses of upper and lower flanges,
respectively

Displacement vector component

Displacement components in x-, y-
and z-directions, respectively

k-th order displacement components in x-,
y- and z-directions, respectively

Nondimensionalizedé k-th order displacement
components in x-, y- and z-directions,
respectively

Total displacement components in x-, y-
and z-directions, respectively

0-th order elastic deflection

Total initial deflection

Nondimensionalized total initial deflection

Total deflection
Total elastic deflection

Coordinates
oo/E

a/h and b/h respectively (slenderness ratios
of webplate)
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vi

Slenderness ratio of compression flange

Critical slenderness ratio of plate for
vertical buckling of flange

Nondimensionalized load
Nondimensionalized lateral and torsional
buckling loads, respectively

Nondimensionalized plate buckling load
Nondimensionalized ultimate load
Strain tensor component

Strain tensor components in the plane of
plate

Bending strain components

0o/ch

AM/ (aS)

Nondimensionalized flexural rigidities of
upper and lower flanges, respectively

Aspect ratio of panel (b/a)

Nondimensionalized amplitude of total
initial deflection (A/h)

Poisson's ratio of steel
Nondimensionalized coordinates

In-plane stress components
k-th order in-plane stress components

Nondimensionalized k-th order in-plane
stress components



vii

T =T - .

OX, Oy' ozy Total in-plane stress components
o o] o] Initial stress components
xo’ “yo' “xyo pone
G g G Nondimensionalized initial stres
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components

g Bending stress components

bx’ 0by’ Tbxy

Gbxo’obyo'cbxyo Initial bending stress components

Ogr 0% Stresses in upper and lower flanges,
respectively
Ogr 0% Nondimensionalized stresses in upper and
lower flanges, respectively
og Oyo at x = a/2 andy = 0
Ogr cé Stresses in left and right stiffeners,
respectively

g , &' Nondimensionalized stresses in left and
s : : :
right stiffeners, respectively

Oygr oéf Tensile strengths of upper and lower
flanges, respectively
Ovw Tensile strength of webplate
T Average external edge shearing'stress
¢f, ¢% Nondimensionalized cross sectional areas
of upper and lower flanges, respectively
¢s’ ¢é Nondimensionalized cross sectional areas

of left and right stiffeners, respectively

wf, W% Nondimensionalized torsional rigidities of
upper and lower flanges, respectively
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CHAPTER ONE: INTRODUCTION
Purpose of Study

The frequent use of steel in bridges, buildings, ships
and aircraft makes it necessary to consider instability problems
in these structures. With recent increase in the use of high
strength steél, the instability problems are becoming even more
important in the design of steel structures. It is true that
structures made of high strength steel can be designéd so that
their weights are reduced compared with those made of ordinary
carbon steel. However, the structures made of high strength
steel tend to be more flexible and less stable because of
reduction in cross sectional areas with the modulus of
elasticity remaining the same.

One of the most important and interesting problems of this
kind is found in the design of webplates in steel plate girders.
Since the end of the 19th century, many attempts have been made
to design webplates of steel girders considering their buckling
stresses based on the small deflection theory of plates. It has
been a well-known fact, however, that buckling-stress of web-
plate has little bearing on the true load carrying capacity qf
webplate. Furthermore, buckling of webplate seldom occurs
because of the existence of initial deflection in the webplate.
This gives rise to the following question: "If the buckling of

the webplate is not important, is it possible to design a



really flexible webplate without having instability problems?"
Currently, it is believed that even a very flexible webplate
can carry a considerable load if the girder is well designed.
For this reason, the specifications for the design of web-
'plates are being subjected to reconsideration in various
countries.

The purpose of this study is to investigate the signifi-
cance of plate buckling on the behavior of plate girders and
the behavior of girder panels beyond their buckling loads.

Specific points of interest in this study are:

1. Effect of initial stresses due to some causes such as
welding,

2. Effect of initial deflections due to some causes such
as welding, |

3. Effect of rigidities of the boundary members such as
flanges and stiffeners,

4. Load carrying capacity of webplate in pure shear
condition,

5. Load carrying capacity of webplate in pure bending
condition,

6. Load carrying capacity of webplate in combined shear
and bending condition,

7. Effect of yield strength of steel,

A method of analysis based on the large deflection theory

of plates is proposed for the purpose of this study. It is



noted that several attempts were made to analyze webplates
With simple boundary conditions in the past. In the proposed
analysis, plate girder panels are considered as elastic systems
consisting of webplates and their surrounding members. The
boundary conditions, therefore, include various interactions
between the webplates and their surrounding members. It is
necessary to establish, first, how well the proposed analysis
predicts the behavior of the panels and secondly, how it may
be used to predict the ultimate loads of panels. Elasto-
plastic analysis of the webplates is beyond the scope of the
proposed analysis; however, it is important to know under what
load yielding initiates in the panel.

The large deflection theory of plates is a nonlinear
theory and its mathematical natures are not yet completely
known. Two major problems exist in the proposed analysis:

(1) how to linearize the nonlinear partial differential
equations, and (2) how to meet complex boundary conditions
imposed on the panels. For the first problem, a method similar
to perturbation method is applied. For the second problem,

the finite difference method is used since analytical solution

is extremely difficult.
Definition of a Plate Girder’

A plate girder can be defined as a deep flexural member

consisting of webplate, flanges (with or without cover plates)



and stiffeners. The girder elements such as webplate, flange
plates, cover plates and stiffeners are connected to each
other by means of welding, riveting or bolting. Plate girders
are frequently used in bridges and large span buildings when-
ever and wherever the cross sections are considered to be
economical. Unlike rolled beams, the design of plate girders
requires special considerations on the problems of instability.
Figure 1 shows some typical plate girders for highway bridges,
and Figure 2 shows some possible cross sections for plate

girders.
Summary of Previous Work

It is amazing to note that the first instability problem
was formulated both theoretically and experimentally by Euler
about two centuries ago when structures were mainly made of
stones, bricks and wood. Euler's concept slept and was not
brought into practice for a long time until steel began to be
used for buildings and bridges. Euler investigated the
instability problem of columns subjected to axial compressive
load. Since the end of the 19th century, great efforts were
made by many investigators to solve the buckling problems of
flexible structures mainly made of steel. The concept used
for column buckling was also applied to plate buckling problems
and plate buckling was believed to govern the load carrying

capacity of webplates of steel plate girders. Later, through



(a) Straight plate girder with
vertical stiffeners

(b) Haunched plate girder with
vertical stiffeners

(c) Straight plate girder with
vertical and horizontal
stiffeners

Figure 1. Typical plate girders used for highway bridges

]
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(a) (b) (c) (a)

(e) (£) (g)

Figure 2. Possible cross sections for plate girders



practices and experiments, the phenomenon of plate buckling
proved to be significantly different from that of column
buckling, and the existence of postbuckling strength in plates
became'gradually recognized.

In order to have the mathematical explanation of the post-
buckling behavior of webplates, von Karmadn first formulated the
large deflection theory of plates (15) and later introduced
the concept of effective width for plate in compression (16).
After von Karmdn, many investigators solved the post-buckling
problems mathematically using Fourier series or using energy
approach (11, 25, 29, 30, 31). Alexeev (1) made use of a
successive approximation method in solving the nonlinear
equations of large deflection theory of plates.

Basler and others (2, 3, 4, 5, 13) performed an exfensive
investigation on welded plate girders experimentally and
established the concepts of load carrying capacity of steel
girders subjected to bending, shear, or both combined. The
-analysis they proposed and used is not highly theoretical.

Yet it is quite simple and accurate in the prediction of load
carrying capacities so that fairly good design can be expected
from the design formulas they derived. 1In a panel subjected to
bending moment, some portion of the webplate in compression
zone is assumed to offer no resistance to the bending because
of the buckling of the webplate. On the other hand, in a panel

subjécted to shearing forces, a diagonal tension field is



assumed in such a way that the flanges do not provide the
anchor for the tension field. Their method ié a limit analysis
method since a failure mode is assumed in computing ultimate
load. The only drawback of this method is that it cannot
provide the behavioral informations of girder panels through-
out its loading stage.

Cooper and others (10) investigated the load carrying
capacity of welded constructional alloy steel plate girders.
The emphasis was placed on the effects of high strength steel
and the effects of residual stress in girder panels.

Massonnet and others (19, 20) investigated experimentally
the effect of stiffeners intensively and established the
minimum rigidity required for stiffeners to maintain girder
panels in stable conditions.

Rockey, Cook and Leggett (7, 8, 9, 24) investigated
experimentally the buckling loads of panels with horizontal
stiffeners and the optimum rigidity for the stiffeners to keep
the panels stable.

¥xaloud and Donea (25) investigated the effect of the
residual stress on the post-buckling behavior of webplates.
The large deflection theory of plates was used in the analysis.
The effect of the initial deflection and the minimum require-
ment for the flange rigidity in the post-buckling range of
webplate were also studied.

A method quite similar to perturbation method was used by

Stein (26, 27) to investigate the post-buckling behavior of



simply supported rectangular plates subjected to longitudinal
compression and subjected to a uniform temperature rise. The
basis of his approach is the expansion of unknown displacement
components into a power series in terms of an arbitrary
parameter. This expansion enables the conversion of the non-
linear large deflection equations of von Karmdn into a set of
linear equations. Stein states that the method of solution he
used is similar to a perturbation method and that in a true
perturbation method, consideration is restricted to solutions
which involve only small values of the arbitrary parameter.
Furthermore, he explains that the smallness of the arbitrary
parameter is not required in his analysis since the coeffi-
cients of the higher powers are small. Mansfield made use of a
method similar to Stein's to analyze the post-buckling behavior

of a compressed square plate (17, 18).
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CHAPTER TWO: PROPOSED THEORETICAL ANALYSIS
Basic Assumptions for the Analysis

Figure 3 shows a panel of steel plate girder surrounded
by two flanges and two vertical stiffeners and subjected to a
combinatién of bending moment, M, and shear. The shearing
stress, T, is assumed to be constant over the cross sectional
area of webplate.

The girder panel system is assumed to be linearly elastic
until yielding occurs. The initiation of yielding is predicted
by von Mises yield criterion.

The analysis requires solution of displacement components
u, v and w in x-, y- and z-directions, respectively. For
convenience, the rigid body motion displacement components
should be eliminated from the system. Thus, the degree of
freedom of the system is six, of which three refer to the
displacement components u and v; while the other three refer
to the displacement components, w. For convenience, it is
assumed that displacement components u vanish at corner points
(0,0) and (0,b) (See coordinates shown in Figure 3), and the
displacement component v vanishes at corner point (0,0). On
the other hand, displacement component w is assumed to vanish
at any three of four corner points.

The flexural rigidities of the boundary members are quite

large compared with the flexural rigidity of the plate so that
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y
upper flange
 E— — b = = =
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Figure 3. Steel plate girder panel
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the curvatures of displacement component w are assumed to be
negligible along the boundaries. Hence, combining with the
assumptions mentioned above, the displacement component w
vanishes along the boundary members. Similarly, the flexural
rigidities of boundary members consisting of a stiffener and
the adjacent panel are quite large so that the curvature ‘
associated with displacement u in y-direction can be assumed
to be negligible. Combining with the assumptions previously
made, the displacement component u is assumed to vanish along
the edge x = 0.

Based on the above-mentioned assumptions, the girder
panel shown in Figure 3 can be represented by the mechanical
model shown in Figure 4. Analytical description of boundary
and loading conditions associated with this model is given in

a later section.
Basic Relations

The purpose of this section is to define certain relation-
ships among stresses, strains, and displacements, which are

used in the development of the proposed analysis.

Stresses
The stresses can be divided into in-plane stresses and
bending stresses.

In-plane stresses The in-plane stresses can be

further divided into two: the initial stresses and the

stresses due to loading. Let the initial in-plane stresses
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\\\\\

Figure 4. Simplified mechanical model of webplate panel
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be designated as fnllows:

g (o) ’ T

xo’ yo Xyo

Let the in-plane stresses due to loading be designated as

follows:

-7 —
%% = %%o0 t Oy
G =g _+3 (W

The sign convention for these stresses is shown in Figure 5.

Bending stresses Similarly, the initial bending

stresses are designated by:

(o] g

bxo’ byo’ Tbxyo !

and the bending stresses caused by the loading are designated

by:
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X
Oy + ay dy 0e
Xy
A Txy + 3y dy
—
A T
T + —r\ﬂ dx
xy oX
0 - aox
X Ox+—a§dx
T
Xy
Y
-
T

Y Xy

o]

Yy

dx )J

-

Figure 5.

Sign convention for stresses
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Stress-strain relationship

According to the Hooke's law, the in-plane stress-strain

relationship is given by the following equation in matrix form:

( Oy N ~ a N EL N
1-v? 1-v? X
{o. =8 |2 = 0 < E. P (2)
Y l"\)z l_\)Z Y
T 0 0 —_ Y.
( Txy A N 2(1+) 2 N Yxy
Similarly, in bending
1 V
~a N e 0 ~N d £ N
bx 1-v?  1-y2 bx
v 1
<0 > = E 0 { € > (3)
by 1-v? 1-v? by
1
\Thxy / (0 0 2(1+vT'J ( Ybxy/

where €t ey and ny refer to in-plane strains, and €px’ eby

and bey refer to bending strains, both due to loading.

Displacement vector components

The displacement can be expressed by a vector which has

three components u, v and w in x-, y- and z-directions,
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respectively. In general, initial (or residual) deflection
exists in a webplate due to welding process. Let this initial
deflection be designated by Woe Then, the total deflection

wT is given as follows:

W= W+ w (4)

The initial displacement components in the plane of the plate

ug and v, are assumed to be zero. Therefore, the total dis-

placement can be expressed by the following equation:

u 0 u

VT = 0 + v (5)
T

w W \

Strain-displacement relationship

Again, there are two different strain-displacement
relationships: one for in-plane and the other for bending.

In-plane strain-displacement relationship The

‘etching of the neutral plane corresponding to the non-linear
por ion of the strains is also considered. Using Lagrange's
displacement-strain tensor concept, the relationship is

symbolically written as follows:

Eij = 1/2 (ui,j + uj,i + uk;l uk,j)
where
ou.
ui'j = 5—;—



Q
o

auk.
)

X

u
(6)

3
and uk,i uk,j = kzl

xw.l

i

(SR

€.. refer to the strain tensor components; while u, refer to
the displacement vector components.
The term u, . u, . represents the nonlinear strain
k,i "k,J
component due to large deflection. However, it is generally
assumed that ths= in-plane displacement components u, v are

quite small compared with the deflection w so that

a W w, . = W, ’W (7)
b 7% Sk % BCHRALE SRS B T
i 3

In terms of x,y coordinates, the components of the total
in-plane strain as applied to the cases of thin plate with

large deflection can now be written as:

=T _3u’ . 1wl | aw
X 99X 2 93X 29X

=T _ ave 1w aw 8)
Y oy 2 9y 9y

7 - BuT + 8VT + BwT.BwT

ny oy ax dX 9Jy

where Ei, Eg and 7§Y are total in-plane strain components.
Substituting the displacement vector components given in

Equation 5, the following equations are obtained:



where

o]

|

=

Xy

and

X0

Yo

Yxyo

1}

In

oV 1
3y T2
ou oV
3y T
.1_8_"19]2
2 9X
£ 'awo]2
2 ay’
awo.awo
9X oy

Bwo aw
dy 9x

Bending strain-displacement relationship

the theory of plates,

32w

(9)

(10)

(11)

According to
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e = —g 32w
by ayz
= =22z .iny_
Yoxy ax0y (12)

Stress-displacement relationship

Making use of the stress-strain relationships and the
strain-displacement relationships, the stress-displacement
relationships are obtained for both the in-plane and bending
stresses.

In-plane stress-displacement relationship

ow ow

5% = I:%; %% + v%% + (—E% %; + v—§% %;)
+3 G0+ 3 397
v 3G9ty 7] (13)

ow 9w

dxX dy
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Bending stress-displacement relationship

-Ez (9?2 32w
px ~ ( Tt v z)
1-vZ 3x? dy
_ 2 2
o, = Ez (8 LA VB WJ (14)
Y 1-v2 T3y? ax?
-Ez 92 w

Criterion of yielding

Among several yielding criteria, von Mises' yield
criterion is generally accepted for steel. To determine the
initiation of yielding in the webplate the following von Mises

comparison stresses are first defined:

— =2 =2 _ “".— w2
UvM —V/vox + oy ox oy 4+ 3 TXY

vM1 =‘¢/0;1 + 0;1 - 0 .~ 0 + 3 12 (15)

2 2 2
- - ° +
OMZ \/OZ+O 2 o 20 2 3T 2

are less than the yield strength of the

If o o and Ov

vM’ “vM: M2
webplate, Gyw' the webplate is elastic. The subscripts 1 and

2 refer to upper and lower surfaces of the plate, respectively.

The terms without numerical subscript are for the middle plane
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of the plate. Thus, o o and © correspond to von Mises

vM’ “vMa vM2

comparison stresses at mid-depth, on upper surface and on
lower surface of the webplate, respectively. Natgrally, bending
and in-plane stress components are added for stress components
with numerical subscripts.

If the appropriate von Mises comparison stress is smaller
than the yield strength of the webplate, OYW, the point in

question is considered to be elastic.

Formulation of the Problem

Large deflection theory of plates

The small deflection theory of thin plates established
by Lagrange is based on the following assumptions:

1. Points of the plate lying initially on a normal-to-the-
middle plane of the plate remain on the normal-to-the-middle
surface of the plate after bending.

2. The normal stresses in the direction transverse to
the plate can be ignored.

3. The middle plane of plate remains neutral during
bending of plate.

4. The deflection of plate is very small compared with
the thickness of plate.

In the large deflection theory of plates, assumptions 1
and 2 are retained; however, assumptions 3 and 4 are not

retained any more. It is believed that if the deflection is
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less than 40% of the thickness of plate, then the stretching
of the middle surface can be neglected without a substantial
error in the magnitude of maximum bending stress (29).

Theoretically, the stretching of the middle surface is
accompanied by terms which are proportional to the square
products of the deformational slopes. Mathematically, these
terms are referred to as nonlinear strain components.

The large deflection theory of plates in which the
stretching of the middle plane is taken into account was
formulated by von Kérm&n (15). It should be noted, however,
that the lateral displacement or the deflection of plate is
assumed to be the only displacement component that gives rise
to the nonlinear components.

If there is no lateral load acting on the plate, the

basic equations of equilibrium of plate are given as follows:

-T =T
Box . aTxy _ o
9x oy
-T T
3 o0
“xy Y - o
9X oy
T _h (=T 32 , -T 3? -T 3 T
v w. =2 (0, —+ 0, —— + 27T, =) (16)
where:
wT = w + w(o), and
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w = w + W also,

Eh?

D = flexural rigidity of plate = —m—
12(1-v?)

h = thickness of plate

w = deflection of plate due to loading

w(® = jnitial elastic deflection of plate
W, = total initial deflection
wg = total elastic deflection
T T - _ .
ox’oy’Txy = total in-plane stresses

The coordinate system is shown in Figure 4 and the sign
convention for stresses is indicated in Figure 5.

Equations 16 are the governing differential equations
for the postbuckling behavior of a girder panel model shown
in Figure 4. A set of boundary conditions associated with

the model is described in the next subsection.

Boundary conditions

Support conditions for wg Kirchhoff established two

relationships for the interaction of the plate element and an
adjacent boundary element (29). One relates torsion of the
plate element to bending of the boundary element; and, another
relates bending of the plate element to torsion of the boundary

element. In the structural model presented previously, however,
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the flexural rigidities of boundary members in the direction

perpendicular to the plane of plate are so large that the

deflection wg vanishes along every boundary.

From this view-

point, the following relationships are obtained:

1. Along x = 0:

. ,  a%l 2wl 3%,
w, =0, and GJI_ == (3p32) = D + v )
€ Y b4 ax? dy?
2. Along x = a:
- 3 azwz azwz azwz
we =0, and GJ'S — (axa —D[ + v ]
Y Y ax2 dy?
(17)
3. Along y = 0:
T T T
32w 32w 32w
wz =0, and GJ'; 3; [axae D(—= + =
Y 3y2 9x 2
4. Along y = b:
T N L a7l a%w.
w, =20 and GI: 5= |ls=0=— -D +
e ' f 3% [Bxay) ( 3y2 v axz)
where: © G = Modulus of rigidity
I Jé = Torsional rigidities for stiffeners
Jf, J% = Torsional rigidities for flanges

Boundary conditions for in-plane displacements, u and v

In general, two relationships can be obtained to designate the

interaction of the plate element and an adjacent boundary

element.

One refers to the longitudinal equilibrium of a
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boundary element, and the other refers to the equilibrium of
this element in the direction perpendicular to the axis of the

boundary member. These two relationships can be expressed

Il

explicitly along y 0 or y = b. The longitudinal equilibrium

Il

conditions along x 0 and x = a, however, are replaced by
different and simpler conditions because the curvatures of the
vertical stiffeners in y-direction are assumed to vanish. The

boundary conditions are given as follows:

1. Along x = 0:

90
S h =T h
u=20, and — + — 1 = = T
3y As Xy As
2. Along x = a:
' 3o!
3%u s h -T h
— =0, and —— - 55 T = - =1 (18)
8yz ay As Xy AS
3. Along y = 0:
4 e 90!
Eip 2¥ = h 5l , and —= + 32 e =0
ax* Y £ Yy
4. Along y = b:
34v —T 90¢ h —T
Eif = ~-h ¢, and—a—}z—z-—-x=0
ax" Y £ XY
where:
Ogr o; = Stresses in left and right stiffeners,
respectively

Q
Hh
-
Q
i

£ Stresses in upper and lower flanges, respectively
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A, Aé = Cross sectional areas of left and right
stiffeners, respectively

Ag, A% = Cross sectional areas of upper and lower
flanges, respectively

if, i% = Flexural rigidities in y-direction of upper

and lower flanges, respectively

Conditions of zero net resultant forces Since there

is no external load acting perpendicular to a boundary member,
the corresponding resultant force should vanish at each of the
boundaries.

These conditions are given by the following equations:

1. Along x =0

b
h Ei dy | +Ago. | +ALor | =0
0 x=0 x=0 x=0
2. Along x = a
b
~T
h|{ o,dy | +B.0. | +ALc:. | =0
0 * x=a £t X=a t X=a
3. Along y =0
a
=T

0 s 8 y=0
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a
=T ' 1 =
h o, dx l + A o l + Al ol l =0 (19)
0 y= y= y=b
Bending moment conditions The bending moment at x = a

should be of uniquely assigned value. The condition is given
as follows:

b

M | =-h Ezydy | -b Ao, | (20)
X=a 0 X=a X=a

However, there are no external torques acting along two
horizontal edges: y = 0 and y = b. Hence, the following

conditions should be satisfied:

Mm | =-n 5o x dx ~aaol | =0 (21)
S S
y:O 0 y:O y=0
(y=b) (y=b) (y=Db)

Problem Formulation by Means of an ExXpansion of
Displacement Components in Terms of
an Arbitrary Parameter
The large deflection theory of plates is a nonlinear
theory in a geometric sense, and its mathematical nature is

still not well known at the present time. A rigorous analyt-

ical solution to the problem is extremely difficult. Because
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of this, an attempt‘is made herein to solve the problem
approximately with the experimental evidence as a guide. A
method of expanding the solutions of Equation 16 into
polynomial series is proposed in this thesis. It is seen that
this method enables the linearization of the nonlinear equa-
tions and that the solution process is systematic. This
polynomial series expansion is based on an engineering judge-
ment on the load-displacement relationships experimentally
obtained.

Displacements, stresses and stress-displacement relations in
terms of an arbitrary parameter

The displacement components u, v and w may be expanded

into the following forms in terms of an arbitrary parameter, A:

[ee)

u= 1z ul ,k
k=1
©o

v = I v(k) Ak
k=1

w= 1 wk kK
k=1

where u(k), v(k) and w(k) (k =1,2,3,...) are unknowns yet to

be determined. The terms corresponding to the first power may
be identified as those which can be considered in the usual

small deflection theory of plates. The terms corresponding to
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the second power will be found to introduce the first
approximation to the large deflection of plates. Solutions of
additional higher power equations will give the second and
then higher approximations (26, 27). In this thesis, however,
consideration will be limited only up to the third order
because of great complexity involved in the solution process
for the powers higher than the third. By keeping the third
power terms it is possible to evaluate the relative signifi-
car.ce of terms corresponding to the first through the third
powers. Thus, the expansion of displacement components

mentioned previously may be rewritten in the following

manner:
a0 ) [ D) a'?) a3 f Al
{ v [ o= v (D) v (2) v(3) 9 e (22)
w | ! W W (2) ) A3 J




30

Similarly, the in-plane and the bending stress components may

be expanded into the following form:

(= (—(1) —=(2) =(3)
Oy ) Ci O C W
5 '(;(l) 5(2) 3(3)
Y Y
T z(1) A?(Z) =(3) (A
Xy Xy Xy Xy
{ r= L (23)
(1) (2) (3)
be 0bx be Obx { a*
(1) (2) (3) 3
Oby Oby Oby Oby (A7)
1 (@ (3|
\Tbny \Tbxy Tbxy Tbxy/

Substitution of Equation 22 and Equation 23 into Equation 13

yields the following relationship:

g(l) 3(2) 3(3)
X X X
E(l) 3(2) 3(3)
Y y Y

—(1) =(2) =(3)
CTxy Txy Txy

] L Mop . Mo 2
9%, 9y, dX 90X dy 9y
= E \) e .a__ -E_).V.q_q +\)BWO§__.
1-v? 90X, Y, dy dy 9xX 9ox
Llva 1wa 1w (Mod , Mo |
2 3y, 2 09X, 2 90X dy dy 09X



a1 a(?) a3 h
o (1) v (2) v 3)
W) w'?) w3 )
(1) (1) (1) (2) (1) (2) h
10w V(oW 2 ow ow ow oW
(o, 7( ox )%+ 2\ 3y rTRX 5% — © Voy dy
(1) (1) (1) (2) (1) (2)
10w V oW 2 ow ow ow oW
+| 0, 3l 3y )? + 5(5% r oy 5y T VTix T Tox
. 1-v aw ) gy (1) 1-v aw® @ e 9y (@
~ ! 2 9x oy ' 2 X dy oy ax

(24)
Since wz = w + w(o), the substitution of Equation 22 into
Equation 14 yields the following relationship:
- N
(1) (2) (3)
9bxo “bx Ipx Opx
(1) (2) (3)
0byo Oby oby 0by
(1) (2) (3)
LTbxyo Tbxy Tbxy Tbxy/
(a2 2
0 + 0
Ix? dy?
2 2
- E z ﬁ 9 + \)3 > (W(O), W-(l), W(~2), W(B)) (25)
1-vZ | 3y? ax?
32
( (1-v) X3y J
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Equations of equilibrium in terms of polynomial series

Upon substitutions of the polynomial series for both
displacement components, Equation 22, and the in-plane
stresses, Equation 23, into Equation 16, the following sets

of simultaneous equations are obtained.

Zero order approximation

Boxo arx o
e F gt = 0
X ay
3T%yo aoyo
9% + oy =0
2 2 2
V“w(o) = % [axo 9" 4 S 9 4 2Tx o 533—-] W (26)
ax? YO ay? Y Y
lst order approximation
a5 ) a?ii}
ox + oy =0
T 45D
"_3"X + —XL =9 (27)
X oy
2 2 _ 2
V“w(l) _h [(8(1)3 + 3(1) 3% 2T(l) C) )
D X g2 Yy 3y?2 Xy 9X9y o}
32 32 th (1)]
+ (o + 0 + 27 ) W
X0 o2 yo 3y ? XYO 9Xdy
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2nd order approximation

352 a7l2)
X XY _ ¢
9xX oy
2ti2) 552
Xy Y = 0
ox ay
(28)
2 2 2
(2) h [(3(2) 3” 3(2) 3" 4 2;(2) ) ) W
D X 3% 2 Yy ay? Xy OXoy o
~(1) 3% | —(1) 3? =(1) 32 (1)
—_— —_+ 2
F O st st Ty may) v
32 32 32 (2)]
—_ _—
+ (Oxo 9x2 + Oyo ayz 21 Xyo XY y
3rd order approximation
—(3) =(3)
Box arxy _ o
90X Yy
(3) —(3)
xy OV = 0
9X Yy
. (3)_9_[-—(3) 82 , =(3) _3?% =(3) _3?
w = 5 (cx - + C - + 2Txy axay] w_
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v (B 2452 B, px2) 9%y ()
Xy

X axz Yy ayz Bxay

+ (E(l) A B L A S

) w(2)
X a2 Y  ay? Xy 9x3y
2 2 2
+ (Oxo 2 ° 3" 4 270 aia ) w(3)] (29)
3% 2 Y 3Y2 Y Y .

Boundary conditions in terms of polynomial series

Substitutions of Equation 22 and Equation 23 into the:
boundary conditions shown in Equations 17 through Equation 21
make it possible to expand these conditions into series forms.

Support conditions for WZ The support conditions are

linear with respect to the perturbation; therefore,

1. Along x = 0:

W. =0, GJs e T =D + v
Y Y ox? dy?
2. Along x = a:
(k) . 3 BZW(k) aZw(k) aZW(k)
w =0, GJ s 3y ( 0Xd ) -D v )
Y Y ax? dy?
3. Along y = 0: (30)
w(k) - 0 - 3 (azw(k) 5 azw(k) .\ vBZW(k)
- r’
f ox 9X0y 3y 2 %2
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(k)

where

k=290,1,2,3.

Boundary conditions for in-plane displacements u, v

Stresses in flanges and stiffeners have the following

relationships:

av,

] —_ ' = _3_1_]_._
o _ (or os) = E 3y of (or of) = E T (31)

S

Therefore, these stresses can be expanded into series forms by

virtue of Equation 23. For example, o, can be expanded as

follows:
3 1 2 3
oS=E§-§(V()V()V()] Y . (32)
AZ
A3

The externally applied shearing stress, T can be expanded into

a series:

(1)

T =T A+ 1(2)

p? 4+ 3 pe (33)

Upon substitutions of Equations 1, 23, 33 and the equations
similar to Equation 32 into Equation 18 provide the necessary

boundary conditions.



Zero order

obtained as follows:

1. Along x = Q:

2. Along x = a:

3. Alongy =0: o

4. Along y

Higher order

are obtained as follows:

1
o'
Q
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The zero order boundary conditions are

= (
Xyo
= 0
Xyo
=0 and T
yo Xyo
yo = 0 and Txyo

The higher order

l. Along x = 0: u =0 and
oy? Ag Xy  Ag
2. (k)
2. Along x = a: 9 u 0 and
dy?
L 22v® o n—_ oh k)
dy? Ay Xy Ag
3. Along y = 0:
4 (k)
Ei} 9 v = h o(k) and
£ ax" y
B azu(k) + _1._1_ :r_(k)_ 0
ax2 Ag Xy

(34)

boundary conditions

(35)
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a‘\‘v(k)

Ei, ———— = -h %) ana
ax* ¥
2. (k) _
gou ~ _h=(k_,
ax2  Bg XY
where k = 1,2,3.
Conditions of no net resultant force Upon substitutions

of Equations 1, 24 and the equations similar to Equation 32 into
Equation 19 provide the following conditions.

Zero order

a, and

0 and x

o dy = 0 along x

I
o

(36)

l

o] dx = 0 along y 0 and vy

Higher order

—(k)
O dy + E

(=g
h
Q
%l
9
th
for
"
~
If —
+
o
o
=
Lo
i —
o
L —
|
[e)

along x = 0 and x = a, and
a
y dy s = =
0 x=0 X=a
(37)
along y = 0 and y = b, where k = 1,2,3.
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Bending moment conditions The externally applied

bending moment, M, can also be expanded into a polynomial

series:

(1) (2)

M=M A+ M A2 +M(3) Ad. (38)

The bending moment conditions for zero order and higher order
approximations are obtained as follows:

Zero order

b
Ovo Y dy = 0 along x = a, and
0
a
OYO xdx =0 along y = 0 and y = b (39)
0
Higher order
b
(k)
VAL 5 k) y dy - EAcb agx | along x = a,
y=b
0
a
(k)
and 5K ¢ ax + Ba' a &Y | =0alongy =0 andy =
Y S Y x=a
0 (40)

Choice of polynomial expansion parameter

Figure 6 indicates typical load-displacement curves for

webplates with initial deflections subjected to externally

b.

applied loads in the plane of the webplates (5, 21, 22, 26, 27,
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Load, P
initial T
deflection Load - w~ curve
"
plate o]
buckling |--
load, Pcr
: wT =w + w
I o
L.
Total deflection, wT
Load, P

Load - u, v curve

In-plane displacement
u or v

Figure 6. Typical load-displacement curves
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28). The fact that deflection w may be expressed in polynomial
series with first, second and third powers in terms of the
magnitude of load suggests that the magnitude of load could be
taken as parameter A. The third equation in Equation 22
corresponds to the load-deflection curve shown in Figure 6. On
the other hand, it is seen from Figure 6 that the in-plane
displacement components u and v may also be expressed in terms
of the load parameter. A question exists regarding the maximum
power that should be assigned to the expansions of the in-plane
displacement components u and v. They may be expanded only up
to the quadratic term rather than up to the cubic term. If the
quadratic series are used for the in-plane displacement
components u and v, the deflection w may aiso be conveniently
expanded only up to the quadratic term. Then, the expansion
of the displacement components u, v and w in Equation 22 can

be replaced by the following simpler expansion:

N ( oD a2
A

v f - ¢ v'2) (41)
AZ

. e o2

Consequently, Equations 23, 24 and 25 can be simplified also.
Since the simplification of these equations is an obvious one,
it is not presented herein. A detailed discussion on the

number of terms in the expansions of displacement components
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is provided in Appendix D.
If the average edge shearing stress, 1 is taken as the
load parameter, then A, its nondimensionalized form can be

conveniently defined in the following manner:

A= —, (42)

where O v refers to the yield strength of webplate. Then,

from Equations 33 and 42, the following equations are obtained:

(1) _ (2) _ (3) _
T = Ogyr T =0 and T = 0. (43)
If the externally applied bending moment, M, is taken
as the load parameter, then A can be conveniently defined in

the following manner:

A= —— (44)

Then, from Equations 38 and 42, the following equations are

obtained:
M =0 h a°, M =0 and M = 0. (45)

Method of solution
It is seen that by expansion of displacements in poly-
nomial forms, the equations of equilibrium indicated by

Equation 16 have been linearized into sets of equations given
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in Equations 26 through 29. The form of these sets of
equations indicates that the solution to the problem consists
of solving the basic set of equations four times, from zero
order to third order. After a set of equations is solved, the
solutions are substituted into the next higher order equations
and the solution to this new set of equations is obtained.

This process of solution is repeated from zero order approxi-
mation through third order approximation, each time satisfying
an appropriate set of boundary conditions. In Equations 26
through 29, the first two approximations, i.e., zero and first
order approximations, Equations 26 and 27, represent the

linear portion of the large deflection equations and the second
and third order approximations, Equations 28 and 29, correspond
to the nonlinear portion of the same equations. Also while the
displacement components are expanded into cubic polynomial
forms in terms of the load parameter, the in-plane stresses

in terms of the same parameter have powers as high as twice of
those for displacements because of the nonlinear products
appearing in Equation 6. However, since the boundary condi-
tions are met only four times, i.e., for zero order through
third order, the stresses corresponding to orlers higher than
the third have no meaning. Because of this, every mechanical

guantity is totaled from zero through third order components.
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It is necessary to determine the initial in-plane stresses
0o’ Gyo and Txyo first. Because of the nature of these
initial stresses, the precise analytical determination of them
is not feasible. An approximate solution developed by Skaloud
(25) is used in this thesis. The detailed description of
initial stress distribution is given in the following section.
The remaining zero order equations and all sets of higher
order equations are too complicated to be solved analytically.
In the section following the next, all equations in this group,
including the boundary conditions, are expressed in terms of
displacement components and nondimensionalized. The last
section in this chapter describes the numerical solution of
the third equation in the zero order approximation, and of

individual sets of equations in the higher order approximations,

by means of finite differences.
Initial In-plane Stresses

The purpose of this section is to obtain the distribution

o and T .

of the initial in-plane stress components 0o’ yo Xyo

The basic differential equations are the first and the second
equations in Equation 26. The boundary conditions for these
stresses are given in Equations 34, 36 and 39.

Figure 7 shows a typical initial (or residual) in-plane
stress distribution in a plate girder cross section when the

flanges are continuously welded along the webplate (6, 10, 12,
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22). If vertical stiffeners are welded on top of it, the
stress distribution will be affected by this additional welding
and become as illustrated in Figure 8 (25). Thus, takihg a
particular coordinate system as shown in Figure 8, the stress
distribution may be reasonably approximated by the following

equations:

b2
o 16 (-2 )i-e @] ws e
C ' i (] !
go = <255 X [1- 4 (D2 )[1-4(H) )

wherex = x! +-§-a and y=y' +%b

It is seen that Equations 46, 47 satisfy all boundary
conditions for the in-plane stresses, Equations 34, 36 and 39,
as well as the in-plane equilibrium equations, the first two
of Equations 26.

It is an experimental fact (6, 10, 12, 22, 25) that

aand y'= 0 (48)

N =

Oyo = oo > 0 at x =

In terms of Oy the initial in-plane stresses are obtained

as follows:

o, =-3 &2 a, [1 -4 (g')z] 2 [1 - 12 (%’)2] (49)
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b/2

b/2

X0 yo

T
XYyO

Figure 8. Residual stress distribution in a welded panel
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= - 8 oou[l -4 (§J2][ -4 (%)2]

T
Xyo b2

The distributions of these stresses are illustrated in Figure 8.

Nondimensionalized Zero Order Equation
in Terms of Displacements

The first and the second equations in Equations 26 have
been analytically solved. Only the third equation in Equations
26 remains to be solved. The necessary boundary conditions are
those presented for k = 0 in Equations 30.

Let N be the dimension of mesh points and

b = Aa
u(k) - h ﬁ(k); v(k) = h ﬁ(k); w(k) =h W (k)
(k = 1,2,3)

w_=AW

o o
x='—§""£' =._b__n andxl=-_a_.. !. 1:—?—]‘]! (50)

N-1 7 Y T {-1 N-1 = ¥ N-1

o = co/E

£ = a/h
o = 0_ 0. 3 o =0_ 0. T =0_ T

T
X0 o %xo yo o “yo Xyo o Xyo



48

Then, the nondimensionalized initial in-plane stresses are

obtained as follows:

(51)

?
]
1
N
~—
'—l
)
|_l
N
—
z'
™
R L8
N
LV
~~—
}—J
i
1Y
™
Z
[ Joo}
LP-
s
n

Oyo
oo = - & (5D (20 (1 - ¢ @[ 2 - ¢ DY)

The equation of equilibrium in z-direction is then given by

the following equation:

+ = —
agt A2 3E2%9n? AY ant

ot 2 o 1 a“) ~ (0)
—_ ] W

2 2 2 T 2
= 12 a8 1-v 6xo 3" , _yo 3" 4 5 _Xyo 3 ) ™
(N-1) 2 ag? A% an? A 3Edn

(52)

The support conditions for w(o) which are shown in Equation 30

are nondimensionalized and presented in a later section.

Nondimensionalized Higher Order Equations

in Terms of Displacements

Let

t==2, and u=23%, (53)



The higher order equations shown in Equations 27, 28 and 29

are first expressed in terms of displacements and then non-
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dimensionalized using Equations 50 and 53:

where L..
1]

defined as

uu

uv

I

uw

L Y[ &l
uv uw
~ (1)
LVV LVW v
~{1)
L, U ) Lw

5(2)
5(2)

& (2)

530

5(3)

~{(3)
W

(. (1) (2)
bu bu

(1) (2)
bV bV

L1 L (2)
N~ W w

b (3))
u

(3)
bV

/

b (3)
w

(54)

refers tc a set of linear differential operators

follows:
2 _ 2
32 . 1-v 3
282 212 9n?
1+v 82
2\ 9E3n
3‘7\7 2 BVV 2 _ 3‘77 2
(N—l){ 9 + 1+v o 9 + 1-v o 9
9 9E? 222 3n  9E3n 2022 3E 3n?
25 25 25
+ {a Yo , 1-v i WOJ 8 4 1 ° Vo _ﬁJ (X
562 2x2 an2° 9 2% afan’ and P
1+v 92
21 5Eon
2 2
1 9% L 1-v 3
22 an? 2 32
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. ) ow 2 ow 2 ow 2
L,y = (N-l)(%]{._l o .9 S aY o 9 , 1-v o 3
A% an an? 2\ & JEdM 22X on 9E&?
3%w 32w 32w
+ (_l o . 1-v oy 3 + 1+v o _g]
A3 an? 2)  3E? an 2\ 3Edn 3¢
32w 32w 32%W
L, = o, NV oy 9, 1-v o 3
282 A2 an? dE A% 3&dn 3n
32w 32w 32w
va = l (_l. o + v O) 9__.4. _.__l_\) o .._?_
A A% an? 9827 93n A 9EIN  9E
_ [ [N N
L= o Loyt 2 3t 1 3
wWw 2

B.u aglf )‘2 agZanz }\L} ank

ow_ 3%W %W W dw
+ (n-1) (B) [——3 (—2 + X 9)+ 1V _© O]-i—
R 3L 5g?2 A% an? A2 3n dEdn/ 3k
ow 92w 32w

foen =2 (2 —2+ 29
B an A" 3n? A% g2

~ 2~
1-y o 2 Wo} 3 (&) 1-v2

A2 3E 3EdnJ an U N-1

2 2 2
.[6xo e =B o 2+ 2 % Tyvo : ]
3g2 A2 YO 3p2 YO 3gan

and, bék), bék) and bék) are constant vectors associated with

the equations of equilibrium defined as follows:
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Lue 3e ue N&QHNKQN
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m =) -
e (1) *¢ N

9z Lese . Y
=) - (2! e (T et

NC.m X NK Nwm X M
= M2T *Tr o o GE= (o

238 ue Yz

(e (e &1 T
ueze 3¢ YZ Jue. ue ¢Y ( g A
+ = | lFT=g)- = q
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ue3e ue LYz 230 3¢ g n
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b(3) - (A=l [aﬁ(l) 226 (2) 14y awD) 422
4 B S5E 9E?2 222 an 9EIN

L 1w aa) 3@ () a2g () 55(2)
232 3¢ an? ag? (13

L Ly a2a) 9 (2 1oy g2g () 55 (2) ]

2A2  3&dn an 2)x%2  an? 3¢
b3 o (A=l [_;_aw(l) 020 (2 14y aw ) a2 ()
v B A an an2 21 JE 9E9N
.22 an 3g? A% an? N
L v azett) 952 1oy p2e () aw(z)]
2X  3E3n 9 2x  3g? an
3 1-v2y (1) 82 . 1 1) 2
bVﬁ' ) = —(__g_s_) (_.__\.)-._) (o’}({ ) .___; + _.;. o'y ___2__
N-1"  uz d9E A an
%(l)
v o KBy () (eby (Lovy
A 9gan N- e
2 2 2
(6222 L 152 3%, 5 1.2 325 5()
X 352 a2 Y 3p2 A XY 3gan
2~
(A-1 o aat) 9By s (2

8 g2 o9& ok A2 an on



It was observed through many experiments that

initial deflection Wy

magnitude.

found to approximate most total initial deflection

N-1

B

_(N-l)(l—v)(aﬁ

32

an

~

2

}\‘#

53

Yo 1 aw't) 52

+

an

an

+

AZ

a (1) 53 (2)

v 3w

(1)

35 (2)

)

23

13

32w
(o]

B

A

2

is somewhat arbitrary in its

d

g on

and hence will be used in this study:

where

Upon substitution of this expression for &o

E 343

A

w
o

an

9§

Nevertheless, the following expression

(1 - cos wE) (1 - cos wn)

2
e

9&on

total
shape and

for w_ is

previous relationships, Equations 54, the equations of

equilibrium are obtained as follows:

£

uu

L
vu

L
uv

L

vv

L
uw

r

5 (1)
(1)

= (1)

5(2)
5(2)

7(2)

ﬁ(3)\
(3)

= (3)

Ve

E(l)
%(l)

g(l)

o
surfaces
(55)
into the
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where [Lij] is a linear differential operator matrix,

[ﬁ(k), ﬁ(k), W(k)] is a solution vector for k-th

order approximation, and

(S(k) p (k) BékX) is a constant vector for k-th

order approximation.
Elements of [Lij] are given as follows:
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The constant vectors are given as follows:
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The in-plane stresses appearing above are expressible in the

following matrix form:
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Nondimensionalized Boundary Conditions
in Terms of Displacements

Let

(—£) (£
V. = 24 (1-v) ;7 YL = 24 (1l-v)
£ h? a £ h?® a

Ig Ig
b, = 24 (1-v) ( )i vl =24 (1-v)( )

h?® a h? a

1y, 1 1y, if
K. = 64 (1-v?)(—= ; KL = 64 (1-v2?)(—
: R D

(58)

)

Then the boundary conditions presented in Equations 30 through

40 are expressed in terms of displacements and then non-
dimensionalized using Equations 50, 53 and 58.
1. Support conditions for w: The conditions are

represented by the following differential equations:

L, W(k) = 0 along cach boundary member
1 Vs 5, 32 32 v 3%
where L = 7(N-1) — —(—] - = - = = along x = 0
A% 3n 3E3N 3g2 A% an?
y! 2 2 2 .
L, = %(N-l) S 938 )+ 9° 4 .v 37 along x = a

A2 9n 3E9n 9E? A% a3n?
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[ 2 2 2
L, = %(N-l) £ _3__J -1 97 _ 9 along y = 0
A JE JEdN A% an? 3g?
1 Ve 3, 32 1 32 32
L, = 7(N-1) = — ] + —= + v along y = b,
A 3E 9EdN A% an? 32
(59)
also
W(k) =0 along each boundary member (k=0,1,2,3) (60)

2. Boundary conditions for in-plane displacements u and v:

Along x = 0

The conditions are given by the following matrix equation

AP A L S R A Ay
G(l) 6(2) 6(3)
h L o= m (72 oo we
where u T X F_) N-T Bn
L - 1 2° (-4 19
A 2 an? 2 (1+V) 6; N-1 3¢
A af (61)
(N-1)2 o
D@ 1 aw (1) 5y (1)
T 2(1+v) 9 AB 3% an
£(3)_ 1 e (1) 5 (2) , o' aw (2)

T 2(IFV) g ABY 98 on an  9d¢&
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also u = 0 (XK = 1,2,3)

(62)

and (x =0; y=0) =0 (k=1,2,3)

Along X = a

Similarly, the boundary conditions along x = a are given

by:
@, ) (aB @@ g o @, @, o)
G(l) 5(2) 6(3)
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_ 1 Ay 10
Ly = 2A(l+v)(¢é) N-1 3
Lo A% 1 iy 15
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2(1+v)9A8 9E  am an €
also - ) — o (x =1,2,3) (64)
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Along v = 0
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The conditions are divided into the bending equations‘

and the shear equations. . For this reason, the subscripts b

and s are used in the following expression.
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The boundary conditions here are similar to those along

where
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3. Conditions of no net resultant forces

Along x = 0 or x = a

The condition is given by the following expression:

S 52 53) (1), g2) ()

1 (@ 50)

where Lu' L. and Lf are linear operators shown as follows
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and 63 =1 when n = Q
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Along vy = 0 or vy = b

The condition is given by

(po oy [at @
(1) 52
where Lu' LV and Lg are linear

shown as follows:
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and f£3) are functions as shown below:
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s

and £ = 1 when & = Q
=0 when § # Q
gék) (k = 1,2,3) are functions defined as follows:

e

5(2) - % (A= [_;{a&(l))z N v(aw(l))z]
w 8 A2 am 9E

W + Vv
A2 9n an dE g

g(3) - (N- [_;_Bﬁ(l) 8ﬁ(2) Bﬁ(l) aﬁ(z)]

4. Bending moment conditions The bending moment is
assigned a value at the edge x = a. On the other hand, the
resultant bending moment should vanish along two edges:
vy = 0 and v = b, because of no external bending moments acting
there. Considering the overall equilibrium of the panel, and

referring to Figure 9, the'following equation is obtained:

= =Sa. (69)
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Figure 9.

External force system
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Let
p =2 M | (70)
a’? s
then,
a 2
M =M | -sa=(56-1)sa=(6-Ntha (71)
X=a x=0

The parameter 6 indicates the interaction between the bending
moment and the shearing stress. Therefore, the equation can be

given in the following expression:

() (2 5(3)

(L", L") = _(GBG) (1, 0, 0)
u v g
s 52 5(3)

(72)
w o (£07, £, 1) along x = a.
Also,
5 52y 503
e W IS IR EY R Ch N M OIS

along y = 0 oxr y = b.

where Lg, L; and Lfn' and L are linear operators defined

gt

‘as follows:
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N-1
2 -
L = A ndn Ze o+ ot 1) op
(N-1) (1-v?) |
N-1 along
LG _ AV n dn %ﬁ' X=a
(N-1) (1-v?) 0
N-1
Lm — \)‘ £ dE é__
u 2 0
(N-1) (1-v°) 0 along
yv=0 or
N~1 6N—l y=b.
L = L g ag =+ -1 o)
AMN-1) (1-v2) | an

and
A \ N-1
n (N-1) (1-v?) 0
N-1
Ly = - —— £ dg
g (N-1) (1-v?) )
Functions fék) and gék) have been defined in Equations 67

and 68.
Numerical Solutions by Means of Finite Difference Method

The purpose of this section is to illustrate the use of
the finite difference method in solving Equations 52 and, 54

or 56, with appropriate boundary conditions mentioned in the
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previous section. The reason for the use of this method rather
than the closed-form solution is the complexity of the boundary
conditions. In the finite different method, the basic differ-
ential equations as well as the boundary éonditions are converted

into sets of simultaneous algebraic equations.

Mesh point system

It was explained earlier that the displacement components
u, v and w are selected as the unknowns. The structural system
illustrated in Figure 4 is converted into sets of discrete
points in a systematic manner. Figures 10 through 13 show the
general numbering systems for N x N meshes. N designates the
size (number of mesh lines in one direction) of the mesh
point system. It should be noted that at one grid point, or
mesh point, there are three unknowns, namely, u, v and w at
that point. The total number of unknowns corresponding to
the proposed mesh point system is 3N%?+ 7N - 7 as can be seen
from Figures 10 through 13.

In order to visualize the mesh point .system clearly, the
5 x 5 mesh point system is shown in Figure 14 through Figure
17. As will be seen later, the 5 x 5 mesh point system is the

one used in the actual numerical computations.

Finite difference formulas (Central difference)

Figures 18 and 19 illustrates some derivatives of a

certain function 2. The double circles indicate the points
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d
1 .
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3 N-HL 2N{#3 ;. N2?F5  NZ4+N-3

Figure 10. Generalized mesh point system for u
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2N+1 3N+3 4N+5° N2+42N-3 N2+3N-1
N 2N INK2 4N+4- N24+PN-4 N2+BN-2 N2+4N-1
N-[L 2NH1 3Nf1 AN¥3: N2+PN-5 N24BN-3 N2+4N-2
3 NM3 2N#5 3N+7-  N2+N-1 N24PN+1 N2+BN+2
. (+N_=N2
. . v
2 N2 2Nj+-4 3N$6: N2+N-2 N2Z4PN  N2+3N+1 +3N-2)
1 k 2N 3 3N¥5. N2Z4W-3 N24PN-1 N2+BN
j .
Q :
N+ ONf2  3Np4:  N24H§-4  NZ4PN-2

Figure 11.

Generalized mesh point system for v
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o 2N-2 3N-2  N2-N-2
‘ X Q
c? ﬂ\r J\k j) E A {b —0
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. e r[
2 N1 2N4+1 - N2-2N+1 N2+N
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1 N 2N : N2%12N N2-j-1
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Figure 12. Generalized mesh point system for w
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Figure 13. Generalized numbering system for stresses
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14, ©Numbering system for u
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4 b5 2 69 16 82
41 b 4 61 6 '//// 7 81
4K b3 6 67 7 89
////;1 DiagoTal line
45 b2 $9 66 7 79
b1 $8 . 6% 7 78
2" s
4an b 0 b 7 64 7
Figure 15. Numbering system for v
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90 95 100
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Figure 16. Numbering system for w

N =5
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1B 15 20 25
Vd
9 114 24

8 1
///61: Diagonal line
12 17 242
6 %l 16 31

Figure 17. Numbering system for stresses
N=5
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Figure 19. Expressions for derivatives in terms of
finite differences
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where the derivatives are being evaluated. It is to be noted
that the interval between two adjacent.points in vertical or
horizontal direction is always unity by virtue of the non-
dimensionalized coordinate system £ and n defined in Equation

50.

Equations in terms of finite differences

The basic equations shown in Equafions 52 and, 54 or 56,
and the boundary conditions shown in Equations 59 through 73
can be expressed in terms of finite differences using the
finite difference formulas mentioned above. The presentation
of the whole equations in finite difference forms, is omitted
here because of its bulkinéss.

The equations used can be divided into five major groups.
They are:

1. Egquations of Equilibrium:

In x-direction N?-4 equations
In y-direction N2-4 equations
In z-direction N2-4N+4 equations

2. Boundary conditions excluding those at corner points:

Along x = 0 2N-4 equations
Along x = a 3N-6 equations
Along y = 0 3N-6 equations

Along y = b 3N-6 equations
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3. Corner conditions:

At (0,0)
At (0,b)
At (a,0)

At (a,b)

2 equations
2 equations
4 equations

4 equations

4, Conditions of zero net forces:

Along x
Along x.
Along y

Along y

0 1 equation
a 1 equation
0 1 equation

b 1 equation

5. Bending moment conditions:

Along x
Along y

Along y

Thus, the total number of equations is 3N2+7N-7.

a 1 equation
0 1 equation

b 1 equation

The boundary

conditions used herein are those described in Equations 59

through 73 with the exception of the corner conditions.

Special conditions are required at corner points. They are

explained in the next subsection.

Corner conditions

The corner points provide special conditions for the

in-plane displacement components u and v.
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At (0,0) At this corner point, the boundary conditions
for both x = 0 and y = 0 should be satisfied. Thus, the first,
second, fifth and sixth equations of Equation 35 would be
necessary. The first equation has been satisfied, however,
since u has been set to be zero along y = 0 already. The
fifth equation is a fourth order equation and this fourth
derivative can not be evaluated at the corner. Therefore, the
necessary conditions are the second and the sixth equations
of Equation 35. A

At (0,b) Similar to point (0,0), the necessary
conditions at this point are the second and the eighth equa-
tions of Equation 35.

At (a,0) Similar consideration as was done for point
(0,0) indicates that for this point the third, fourth and
sixth equations of Equation 35 are used. Furthermore, since
edge x = a is where the external bending moment, M, is assigned,
better accuracy is desired to insure the equilibrium of this
corner point. It has been assumed that the stiffeners do not
have curvatures in y-direction. Thus, the moment equilibrium

of the small corner element requires that

-0 - | | (74)

This gives an additional condition for point (a,0).
At (a,b) Similar to point (a,0), the necessary

conditions at this point are the third, fourth and eighth
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equations of Equation 35, and Equation 74.

Computer programs

Appendix C provides a brief summary of computer programs
used in the proposed analysis. This set of computer programs
consists of a main program and twelve subroutine subprograms.
The most important part in the programs is the solution of
simultaneous algebraic equations corresponding to each order
of approximation. These equations are solved by UGELG which
is a library subroutine subprogram based on Gauss Reduction

Method.
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CHAPTER THREE: NUMERICAL ILLUSTRATIONS OF THE PROPOSED
ANALYSIS AND DISCUSSION OF THE ANALYTICAL RESULTS

Description of Test Results Cited

To illustrate the proposed analysis numerically, some
test results on plate girders are analyzed and compared with
the results from the proposed analysis and with other theories.
The experimental data is taken from, first, WEB BUCKLING TESTS
ON WELDED PLATE GIRDERS (5), second, PROOF-TESTS OF TWO
SLENDER-WEB WELDED PLATE GIRDERS (22) and third, THEORY AND
EXPERIMENTS ON THE LOAD CARRYING CAPACITY OF PLATE GIRDERS
(28) . Hereafter, the first and the second series of tests are
referred as Lehigh Tests and the third one is referred as
Japanese Tests for convenience. Twelve tests are cited from
Lehigh Tests and three tests are cited from Japanese Tests.
These test girders are divided into three basic groups:
moment panels, shear panels and combined panels.

1. Moment panels: These panels are mainly subjected to
bending moment rather than shearing force. Seven girder panels

are in this group. They are:

Gl-T1l; G2-T1l; G3-Tl; G4-Tl; G5-T1 from Lehigh Tests, and

A-M; C-M from Japanese Tests.

2. Shear panels: These panels are mainly subjected to
shearing force rather than bending moment. Five girder panels

are in this group. They are:
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G6~T1l; G7-T1l; F10-T2; F1l0-T3 from Lehigh Tests, and

B-Q from Japanese Tests.

3. Combined panels: These panels are subjected to both
bending moment and shearing fofce. Three girder panels are in
this group. They are:

G8-T1; G9-Tl1l; F1l0-T1 from Lehigh Tests.

The description of the geometry and the mechanical
properties of each of these girders is shoﬁn in Table 1. The
cross sections of these girders are shown in Figure 20 and
the loading setups are illustrated in Figure 21 through Figure
25. Among the test girders cited, G3-Tl and G5-T1 are of
different cross sections because these two girders have com-

pression flanges of tubular cross section.
Calculation of the Parameters in Test Girders Cited

All important parameters for the test girders cited are
listed in Table 2. Parameters 6, a and 7, u are different
for each case of computation. It is noted that the parameter
6 does not appear in bending cases and does appear in both

shear and combined cases.

Comparison of the Proposed Analysis with
Test Résults and with Basler's Theory

The plate girders cited in the previous sections are

analysed by the proposed analysis. .The results from these



Table 1. Description of test girders

Test Webplate
Girder Type of Panel max
No. Loadinga dimension 5
a b h w Yo
in. in. in. ksi in.
Gl-T1l M 75.0 50.0 .270 33.0 .15
G2-T1 M 75.0 50.0 .270 35.3 .17
G3-T1 M 75.0 54.3 .270 33.7 .16
G4-T1 M 75.0 50.0 .129 43.4 .21
G5-T1 M 75.0 54.3 .129 45.7 .43
G6-T1 S 75.0 50.0 .193 36.7 .29
G7-T1 S 50.0 50.0 .196 36.7 .35
G8-T1 C 150.0 50.0 .197 38.2 .28
G9-T1 C 150.0 50.0 131 44,5 .15
F10-T1 C 75.0 50.0 . 257 38.7 .11
F10~-T2 S 75.0 50.0 . 257 38.7 .16
F10-T3 S 60.0 50.0 . 257 38.7 .05
A-M M 120.0° 120.0° .450°  28.0%  .30°
B-Q S 120.0 120.0 .450 50.0 .30
c~M M 120.0 120.0 .600 50.0 .30
a

M = moment, S = shear, and C = combined.

bFor Girders G3-T1 and G5-T1 in which the compression
flanges are tubular, t¢ is the thickness of the hollow
circular corss section, and df is the diameter.

cFor Japanese tests, lengths are measured in terms of cm.

dFor Japanese tests, stresses are measured in terms of
kg/mm?

e .
For Japanese tests, loads are measured in ton.
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Top flange Bottom flange

Mode of
' ' ' Failure

te dg Ovg te dg Oys Py

in. in. ksi in. in. ksi kips
.427 20.56 35.4 .760 12.25  35.8 81.0 Torsion
.769 12,19 38.6 .776  12.19 37.6 135.0 Lateral
.328® 8.62b 355 .770 12.19 38.1 130.0 Lateral
.774 12.16  37.6 .765 12,19 37.0 118.0 Lateral
.328b 8.,62b 35,5 .767 12.25 37.0 110.0 Lateral
.778 12.13  37.9 .778 12.13 37.9 116.0 Diag. T
.769 12.19 37.6 .766 12.19 37.6  140.0 Diag. T
.752  12.00 41.3 .747 12.00 41.3 170.0 Diag. T
.755 12.00  41.8 .745 12,00 -41.8 96.0 Diag. T
.997 16.05 28.8 .998 16.00  31.6 170.0 Diag. T
.997 16.05 28.8 .998 16.00 31.6 184.5 Diag. T
.997 16.05 28.8 .998 16.00 31.6 190.0 Diag. T
1.200° 24.00° 28.0% 1.200° 24.00° 28.09 46.5% Torsion
1.200 24.00 50.0 1.200 24.00 50.0 76.0 Diag. T
1.200 24.00 50.0 1.200 24.00 50.0 96.0 Torsion




Table 2. Calculation of parameters in test girders

Test Type of A= B= o ¢% ¢s ¢é
No. Loading b/a a/h

Gl-T1 Moment 0.667 278 0.434 0.460 0.099 0.099
G2-T1 Moment 0.667 278 0.463 0.467 0.099 0.099
G3-T1 Moment 0.724 278 0.422 0.464 0.099 0.099
G4-T1 Moment 0.667 582 0.971 0.975 0.207 0.207
G5-T1 Moment 0.724 581 1.140 0.971 0.207 0.207
G6-T1 Shear 0.667 389 0.653 0.653 0.138 0.138
G7-T1 Shear 1.000 255 0.955 0.954 0.204 0.204
G8-T1 Combined 0.333 761 0.305 0.303 0.473 0.473
G9-T1 Combined 0.333 1145 0.461 0.455 0.710 0.710
F10-T1 Combined 0.667 292 0.830 0.830 0.312 0.081
F10-T2 Shear 0.667 292 0.830 0.830 0.081 0.081
F10-T3 Shear 0.833 234 1.037 0.036 0.101 0.101
A-M Moment 1.000 267 0.533 0.533 0.400 0.400
B-Q Shear 1.000 267 0.533 0.533 0.400 0.400
Cc-M Moment 1.000 200 0.400 0.400 0.300 0.300
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Wf q’% 1ps q)é KJ‘§_4 K;i_4 Hex chr Alelx
(10 7) (10 )

6.08 6.08 0.474 0.474 0.68 2.29 0.139 0.21 0.242
21.00 21.63 0.474 0.474 2.35 2.43 0.157 0.21 0.378
168.40 21.12 0.476 0.476 320.00 2.00 0.148 0.24 0.381
195.20 189.00 4.350 4.350 5.02 5.02 0.407 0.07 0.563
1536.00 191.90 4.340 4.340 669.00 4.17 0.833 0.08 0.495
59.40 59.40 1.299 1,299 3.40 3.40 0.376 0.08 0.328
79.00 81.60 1.863 1.863 11.00 10.90 0.446 0.11 0.389
25.00 24.40 23.300 23.300 0.37 0.37 0.355 0.11 0.226
85.60 82.60 78.900 78.900 0.56 0.55 0.286 0.04 0.165
69.90 70.00 6.590 0.670 7.09 7.10 0.108 0.12 0.342
69.90 70.00 0.670 0.670 7.09 7.10 0.157 0.16 0.371
87.40 87.40 0.833 0.833 20.00 20.00 0.053 0.19 0.382
21.30 21.30 8.950 8.950 2.60 2.60 0.167 0.22 0.640
21.30 21.30 8.950 8.950 2.60 2.60 0.167 0.10 0.282
8.95 8.95 3.780 3.780 1.95 1.95 0.125 0.19 0.555
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G2-Tl
G4-T1
G6-T1
G7-T1
G8-T1
G9-T1
G1-Tl F10-T1
F10-T2
F10-T3
A-M
B-Q
C-M

G3-T1
G5-T1

Figure 20. Cross sections of the tested girders cited
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Figure 21. Test setup for bending panels: G1,G2,G

3,G4,G5
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Figure 22. Test setup for
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shear panels: G6,G7
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41'-2" I
| i |
T 116"
6|l ——{ 12""6" 12"‘6" [ 6"
26'-6"
Shear, S -0.5 P
+0.5ﬁ
Moment,VM
p-75"

Figure 23.

Test setup for girders under
combined loading:

G8,G9
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Figure 24.

Test setup for F10 girder
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Figure 25.

Test setup for shear and moment panels:
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analyses are presented herein with a view to finding out their
correlation with the experimental results regarding the ultimate
loads and the post-buckling behaviors of the test girder panels
cited.

In the proposed analysis, the solution of a single problem,
either bending, shear, or a combination of the two, consists of
solving four different sets of simultaneous linear algebraic
equations step by step from the lowest order to the highest
order. Seventeen parameters are required as the input data to
handle a single problem. These parameters are:

1. Type of loading: Bending moment, shear, or a
combination of the two,

2. Aspect ratio: A=b/a,

3. Slenderness ratio of webplate: g=a/h,

4. gy

S 9gy

6. ¢g

7. bg

8. Ve (4 through 16 are

9. wé’ rigidity parameters)
10. by

11. vl
12. Ker

13. K%,

14. a= OO/E ’
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15. c=oo/on ’
l6. u=A/h
17. Magnitude of load: A.

'~ After the problem is solved by the computer, the following

results are printed in the computer output sheets for each

mesh points on the webplate:

10.

11.

ﬁ(l)'

NG

w(O)'

Qe

X0

., G

Yo

2

xyo’

5.(0)

px ’

5.(0)
by ’

~(0)

5(2)

$(2)

ﬁ(l)'

8(1),

X

~ (1)
y 14

~(1)
Txy

~(1)
Ipx

~ (1)
Oy

~(1)

Tbxy'

[

’

and 4

and v

& (2)

5{2)
. (2)
Oy

~(2)
v Tey

(2)
bx

~

)

_(2)

Tbxy

(3)
(3),

and W ”(3)

and & “(3)

~(3)

and ¢
Y

~(3)

and T xy

~(3)

and ¢ bx

~(3)

and cby

~(3)

and T

bxy

Y
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12. w7,
e
~T .T .T T ~T T .T ~T ~T ~T
13. Ok’ 0y’ xy' “wvM’' Tpr 927 Oyyv yl’ Txyl' Oymi’
5T, 5%, %T__ and &%
x2" Yy2' “xy2 vM2 °

All solutions given in this chapter are based on 5 x 5 mesh

point system.

Analysis of panels subjected to bending

Past experiments show that the load carrying capacity of
deep plate girder panels subjected to pure bending moment is
most frequently governed by buckling, such as vertical buckling
of flange, lateral buckling of beam and torsional buckling
of flange plate, rather than by the yielding of the webplates.
Consequently, these modes of buckling should be checked
to insure the stability of the plate girder panels (4,6,14, 28.

The analysis of computed results from the proposed analysis
of a bending girder panel consists of checking the above—m
mentioned possibilities of local buckling as well as checking
the yielding of the webplates. It is to be noted that the
proposed analysis loses its validity when yielding occurs any-
where in a plate girder panel under investigation. The
procedure for the analysis of computed results is summarized as
follows:

1. Evaluation of flange stresses using 4,
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2. Investigation of the yielding of webplate using von

0vM’ OyM1 and M2’

3. Investigation of the possibility of vertical buckling

Mises yield criterion:

of flange,

4. Investigation of the possibility of lateral buckling
of beam, |

5. Investigation of the possibility of torsional
buckling of the compression flange.

The buckling criteria used in this study are given in Appendix
A.

In each case, comparisons are made between the results
obtained from the proposed analysis and the experimental values
whenever these values are found useful and applicable regarding
the post-buckling behaviors of girder panels such as 1oad-of
and load-E% relationships. Furthermore, the simple beam theory -
is applied to find a possible indication of web-buckling in
some of the plate girder panels cited. .The simple beam theory
assumes no web-buckling; in other words, web plates are assumed
to keep their flatness during loéding.

For the purpose of predicting the ultimate lqads for the
cited plate girder panels, Basler's theory (4) is also used for
comparison. A brief summary of his theopry has been presented
in Chapter One. The format of the presentation of the
theoretical results is demonstrated using cases 1 and 2 of test

girder panel G1-Tl. The results from all girder panels are

presented in tables.
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Test girder panel Gl-Tl1 According to the test, the

ultimate load is 8l1.0 Kips. This corresponds to Aﬁx = 0.242.
Furthermore, the failure mode is the torsional buckling of
the compression flange. Assuming that the webplate is simply
supported along four edges, chr = 0.210.

Computer result: Case 1 The maximum

residual stress is assumed to be 0.5% of the yield strength
of the webplate; while the maximum total initial deflection is

assumed to be 10% of the webplate thickness. Then,
o = 0.00000245; z = 0.00222; u = 0.025

1. Flange stresses: In terms of finite differences, the

flange stresses are given in the nondimensionalized form:

~

Gglor 1) = %(N—l)(a%)(ﬁ+l - d_q) .

where §,. and 4_, correspond to the displacement components in

+1 1
x-direction of the right and left points adjacent to the grid
point concerned. Table 3 shows the stresses in flanges at
A = 0.21. The average stress in the compreésion flange is
-0.607.

2, In-plane stfesses: Stresses at various locations in
the webplate are com;uted and listed in Table 4 for A = 0.21.
The result shows that the webplate is not yielded at this load

level.



Table 3.

Computation of flange stresses:

Case 1 of test

girder panel G1-Tl at A = 0.21
Pt. b1 d d,.-u g o
No. +1 -1 +1 -1 £ f

1 0.0473 -0.0446 0.0919 - 0.603

5 -0.0488 0.0460 -0.0948 -0.623 -

6 0.0930 0 0.0930 - 0.611
10 -0.0961 0 -0.0961 -0.631 --
11 0.1371 0.0473 0.0898 - 0.590
15 -0.1416 -0.0488 -0.0928 -0.609 -
16 0.1794 0.0930 0.0864 - 0.567
20 -0.1853 -0.0961 -0.0892 -0.586 -
21 0.2234 0.1371 0.0863 - 0.566
25 -0.2308 -0.1416 -0.0892 -0.586
Average stress in compression flange afav = =-0.607
Table 4. In-plane stresses: Case 1 of test girder panel

Gl-T1 at A = 0.21
~T ~T ~T AT ~T ~T
ﬁg: Ix 0y Txy M SyM1 SvM2 Yielding

1 0.6297 0.1023 0.0635 0.5959 0.6009 0.5914 --

5 -0.6500 -0.1058 -0.0645 0.6143 0.6186 0.6108 -

6 0.6099 0.0002 0.0374 0.6133 0.6140 0.6126 -

10 -0.6224 -0.0001 0.0371 0.6257 0.6255, 0.6260 --
11 0.5905 0.0000 0.0386 0.5942 0.5963 0.5923 -
15 -0.5996 0.0000 0.0379 0.6032 0.6110 0.5709 -
16 0.5671 -0.0001 0.0427 0.5720 0.5731 0.5709 --
20 -0.5779 0.0000 0.0417 0.5825 0.5844 0.5808 -
21 0.5913 0.0964 -0.0390 0.5537 0.5550 0.5525 --
25 -0.6111 -0.0996 -0.0401 0.5721 0.5740 0.5706 --
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3. Vertical buckling of flange: Referring to Equation

A.l, Bv = 404; while B' = 185. Therefore, BV>B'. This

eliminates the possibility of vertical buckling.

4. Lateral buckling: The lateral buckling length, lk,
is 100 in. The flange slenderness ratio, Bf, is 24.07 and the
half width of the compression flange, Ces is 10.28 in. Then,

2 = 48>12 + Zk/cf = 16.85. From Equation A.7, the torsional

Be
buckling is found to precede the lateral buckling.

5. Torsional buckling of the compression flange:
Referring to Equation A.5, y = 1.329; while Yp = 1.002 by

Equation A.6. Therefore, YP<Y . Using Equation A.5, the
. . T _ T _
buckling stress is: Cop = Ocr/ofooYF/on = 0.608.

Previously, the average stress in the compression flange is

found to be -0.607. Therefore, the buckling load is:

T _
Acr = 0.21.

In conclusion, the ultimate load is found to be 0.21
and the failure mode is the torsional buckling of the compression
flange.

Computer result: Case 2 - The maximum residual

stress is assumed to be 50% of the yield strength of the web-
plate; while, the maximum total initial deflection is assumed

to be 10% of the webplate thickness. Then,
o = 0.000245; < = 0.222; u=0.025

1. Flange stresses: Table 5 shows the flange stresses

at A = 0.18. The average stress in the compression flange is
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-0.519.

2. In-plane stresses: Table 6 shows the in-plane
stresses at A = 0.18. Point 11 is found to be yielded at
this load level.

3. Vertical buckling of flange: Bv = 335>8' = 185,
This eliminates the possibility of the vertical buckling.

4. Lateral buckling: 28, = 48>12 + 3 2,/ce = 16.85.
The torsional buckling precedes the lateral buckling.

5. Torsional buckling of the compression flange:

Y = 1.329<yp = 1,414, Equation A.6 gives n = 1.35. Thére-
fore, Szr = 0.567. Previously, the average stress in the
compression flange is found to be -0.519. Therefore, the
torsional bucklipg has not occurred at A = 0.18. A rough

estimation of the ultimate load may be obtained by extending

the elastic analysis beyond yielding load in the following

mannex:
5T
th_ ,th cxY 0.567 _
As= Ay l&;;;' = 0.18 x 0519 = 0.197 .

In conclusion, the maximum elastic load is found to be
0.18. Beyond this load, the girder panel enters the elasto-
plastic range. The ultimate load is estimated as 0.197.

Basler's theory (4) In this theory, it is

assumed that the residual stress has its maximum value of 50%

of the yielding strength of the compression flange. The



0.4912

Table 5. Computation of flange stresses: Case 2 of test
girder pansl G1-Tl1l at A = 0.18

Pt. i i i, -4 5 5!

No. +1 -1 +1 -1 f f

1 0.0405 -0.0384 0.0789 - 0.518

5 -0.0418 0.0392 -0.0810 -0.532 -

6 0.0797 0 0.0797 - 0.524
10 -0.0822 0 -0.0822 -0.540 -
11 0.1175 0.0405 0.0770 - 0.506
15 -0.1212 -0.0418 -0.0794 -0.522 -
16 0.1538 0.0797 0.0741 - 0.487
20 -0.1586 -0.0822 -0.0764 -0.502 -
21 0.1915 0.1175 0.0740 - 0.486
25 -0.1975 -0.1212 -0.0763 -0.501 b
Average stress in compression flange gfav = -0.519
Table 6. In-plane stresses: Case 2 of test girder panel

Gl-T1l at A = 0.18 :
Pt. ~T ~T ~T ~T ~T ~T
No. % Oy Txy oM ymM1 Iym2 Yielding

1 0.5407 0.0879 -0.0494 0.5098 0.5111 0.5086 -

5 -0.5549 -0.0903 ~0.0593 0.5258 0.5260 0.5256 --

6 0.8936 0.0002 0.0312 0.8951 0.8981 0.8924 -

10 -0.1615 -0.0001 0.0319 0.1706 0.1695 0.1723 -=
11 1.0009 0.0000 0.0327 1.0025 1.0089 0.9968 yes
15 -0.0183 0.0000 0.0320 0.0583 0.0638 0.0609 --
le6 0.8574 -0.0001 0.0364 0.8598 0.8634 0.8564 —-—
20 -0.1237 0.0000 0.0354 0.1380 0.1355 0.1412 -
21 0.5072 0.0827 -0.0335 0.4749 0.4747 0.4750 -
25 -0.5232 -0.0853 -0.0344 0.4899 0.4888 -
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ultimate load is computed to be 73 Kips. Thus, Aﬁ = 0.218.
The failure mode is the torsional buckling of the coﬁpression'
flange.

Figure 26 shows a load—&f relationship, and Figﬁre 27
shows a 1oad—8x relaticnship of girder panel G1-Tl.

Test girder panels G2-Tl1l through C-M Similar compu-.

tations are pefformed on these girder panels and the results
are presented in Table 7. Figures 28 through 30, Figure 31,
and Figure 32 show, respectively, load-&x relationships,
load—6f relationship, and a total deflection surface, of
girder panel G2-Tl, Figure 33 illustrates a total elastic
deflection surface of girder panel G3-Tl. Figure 34, and
Figures 35 through 38 show, respectively, a load--&f relation-
ship, and load-&x relationships, of girder panel A-M. Figqre
39 illustrates distributions of 8x, le and 6x2’ and Figure 40-

shows a load-& relationship of the same girder panel.

bx
Figure 41 shows a total deflection surface and Figure 42 shows
an in-plane displacement configuration of girder panel A-M.

Figure 43 shows a relationship of load-flange strain, oy and

Figure 44 shows a load--&x relationship for girder panel C-M.

Analysis of panels subjected to shear

Many experiments have shown that the ultimate load of a
shear panel is always Qoverned by the yielding of the webplate

along diagonal line Dy (See Figures 14 through 17). This



Table 7. Prediction of ultimate load for bending panels

ex

Girder Au chr Moqe of (u)ex
Failure
G1l-T1 0.242 0.210 T.B. 0.139
G2-T1 0.378 0.208 L.B. 0.157
G3-T1 0.381 0.240 L.B. 0.148
G4-T1 0.563 0.073 L.B. 0.407
G5-T1 0.495 0.080 L.B. 0.833
A-M 0.640 0.220 T.B. 0.167
c-M 0.555 0.18 T.B. 0.125

T.B. = Torsional buckling and L.B. - lateral buckling.

bor refers to the maximum residual stress and is given by:

- L = 2
0,0, for Ax>1 and ar—oo/x for Agl.
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[Or ] b () Igcr | Ath Ath B
on th th Ofav max u u
0.005 0.025 1.00 0.21 0.21 0.22
0.500 0.025 1.09 0.18 0.20 0.22
0.500 0.139 1.21 0.18 0.22 0.22
0.005 0.025 1.13 0.35 0.40 0.39
0.500 0.025 1.80 0.20 0.36 0.39
0.005 0.125 1.17 0.36 0.42 0.39
0.500 0.157 1.94 0.20 0.39 0.39
0.005 0.157 1.29 0.33 0.42 0.39
0.005 0.025 1.08 0.39 0.42 0.37
0.005 0.025 1.02 0.60 0.61 0.56
0.005 0.125 1.50 0.39 0.59 0.56
0.005 0.025 1.26 0.54 0.68 0.48
0.005 0.100 1.57 0.42 0.66 0.48
0.005 0.025 1.06 0.65 0.69 0.63
0.125 0.025 1.09 0.64 0.70 0.63
0.500 0.125 1.74 0.42 0.73 0.63
0.500 0.025 1.54 0.45 0.69 0.63
0.001 0.167 1.17 0.56 0.66 0.63
0.125 0.167 1.74 0.36 0.63 0.63
0.003 0.025 1.03 0.54 0.56 0.46
0.150 0.125 1.52 0.33 0.50 0.46
0.003 0.125 1.03 0.48 0.49 0.46
0.250 0.125 (2.36) 0.18) 0.43 0.46
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A = 2
Ty B2
p = 0.139
15
40.20
= 0.025 1%
z = 0.0022
= 0.10
computer result
_________ simple beam theory
0.05
~-O—-~0O-- experimental
i I 1 *\J’_"—‘a
f

Figure 26. Load - 5f curve

Test girder panel G1-Tl1
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p=—2 -
onha
u=0.139:measured
/ t=0.222
/
0.2 b . /
u=0.025 /
r£=0.222 / <ji j)
- T
| u=0.025" /[ 7
£=0.00222 , //
/
/
/
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0.1 ¢ //
/ computer result
/ _
/A~ simple beam theory
i -0—--—--0- experimental
7
/
Y/,
g
X
0 0.1 0.2 0.3 0.4 0.5

Figure 27. Load—6x curve
Test girder G1l-T1
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M
A=
oy ha? 40.4
u=0.025 w
C=0.0022
u=0.157:measurked
 £=0.0022
pu=0.125
r=0.0022 103
9

u=0.157: 0.2
measurjed
‘C=0-222

—COMpPUter results 0.1
_______ simple beam theory
-O--—-—Q- eXperimental
1 1 0){
-1.0 -0.5 0

Figure 28. Load—&x curve
Test girder G2-T1
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< $

—cOmMpUter results
_______ simple beam theory

-O--—--0O- €eXperimental

_u=0.125
£=0.0022

0.

Figure 29. Load—ox curve
Test girder G2-T1l



113

19

M)

e — ——— —— —

-0—-—-—0—

computer result

simple beam theory
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u=0.125
t=0.0022
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Figure 30.

Load—&x curve
Test girder G2-T1
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A= M —
gy ha*
u=0.157: measured value v
t=0.0022
u=0.125
£=0.0022
u=0.025
£=0.0022 4 0.3
0.157:measured [value
0.222 10.2
15
‘
4 0.1
computer result
_______ simple beam theory
-O--—-— O~ eXxperimental
L 1 6
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Figure 31. Load—6f curve

Test girder G2-T1
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Figure 32. Total deflection wT
Test girder G2-Tl: u=0.125; £=0.00222
A=0.36
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Figure 33. Total elastic deflection wg

Test panel G3-Tl: u=0.025; rz=0.00262
A=0,39
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Figure 34. Load - flange stress 8f curve

Test girder A-M
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———— COMputer results

——————— — simple beam theory

u=0.167:measured value

¥ =0.167
G =0.125

2
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4 [ A i
-0.5 -0.4 -0.3 -0.2 -0.1 0
Figure 35. Load - SX curve

Test girder A-M
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Figure 36. Load - 6x curve
Test girder A-M
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Figure 37. Load - Gx curve

Test girder A-M
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Figure 38. Load - 6x curve

Test girder A-M
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compression

torsion

Figure 39. Distribution of Gx, le and 8x2
Test girder A-M: p=0.025; z=0.005
A=0.65
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Qe

xb ] 1

g ha?

Figure 40. Load - bending stress 8bx curve
Test girder A-M
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Figure 41. Total deflection wT
Test girder A-M: u= 0.025; £=0.005
A=0.65
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u/h
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apr——

plane'displacements u and v

£=0.005

0.025;

‘IJ"_"

Test girder A-M:

In-
A=0.65

Figure 42.
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Figure 43. Load-flange strain, £g curve

Test girder C-M
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Figure 44. Load - SX curve

Test girder C-M
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yielding is caused by a significantly large tensile stress in
the direction of diagonal line Dl' This phenomenon is
ordinarily referred as a diagonal tension field action and is
characterized by an outstanding bulge in the deflection surface
along this diagonal line. Due to this buckled deflectional
configuration of webplate it is generally believed that the
minimum principal in-plane stress 82 does not increase too

much with the increment of load along diagonal line D;: on

the other hand, the maximum principal in-plane stress 81
increases quite fast with the increment of load.

The analysis of computed results based on the proposed
analysis consists of checking the deflectional surfaces,
checking the yielding of diagonal line Dy and investigating
g

load-g relationships. The ultimate load of a shear girder

17 72
panel is evaluated by finding the load at which interior points

on diagonal line D, initiate yielding. The yielding is checked

1

by using von Mises comparison stresses 6vM' Gle and Ssz.
Basler's theory (2) is used for comparison of the predicted
ultimate strength. A brief summary of this has been presented
in Chapter One. Overall behavior of a shear panel as predicted
by the proposed theory is compared with simple pure shear case
and with experimental data whenever available. The simple pure

shear refers to the case of an ideal flat plate subjected to

pure shear condition.
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The format of the analysis of computed results for a
shear panel is demonstrated using test girder panel G6-Tl1.

Test girder panel G6-Tl The experiment ultimate load

is 116 Kips. Thus, Aix = 0.328. Assuming that the webplate

is simply supported along four boundaries, chr = 0.077.

Computer result: Case 1 The maximum

residual stress is assumed to be 0.5% of the yield strength of
the webplate; while the maximum total initial deflection is
assumed to be 50% of the thickness of the webplate. Also,

& = 0. Then,
o = 0.00000272; tr = 0.00222; u = 0.125; 8 =0.0

The in-plane stresses on diagonal line D, are listed in Table 8
for A = 0.26. Table 9 shows the computation of the flange
stresses at the same load level. Table 10 shows the compﬁtation
of the stiffener stresses at the same load level. It is seen

that the entire portion of diagonal D1 is yielded at A = 0.26.

Computer result: Case 2 The maximum residual

stress is assumed to be 0.5% of the yield strength of the web-
plate; while, the maximum total initial deflection is assumed

to be 40% of the thickness of webplate. Aalso, 6 = 0. Then,

a = 0.00000272; z = 0.00222; u = 0.100; 6 = 0.0

The!in-plane stresses are shown in Table 11 for A = 0.26. Table
12 shows the computation of the flange stresses at the same

load level. Table 13 shows the computation of the stiffener
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Table 8. In-plane stresses: Case 1 of test girder panel
G6-T1 at A = 0.26
Pt. ~T ~T ~T ~T ~ ~T
No. Txy o 9ymM1 uM2 o 92 Yielding
7 0.5745 1.0192 1.1318 1.1608 0.7874 -0.3638 yes
13 0.6226 1.0791 0.8593 1.3944 0.6495 -0.5962 yes
19 0.5622 1.0095 1.0909 1.1960 0.5991 -~0.5665 yes
Table 9. Flange stresses: Case 1 of test girder panel
‘G6-T1 at A = 0.26
Pt. < . Lo ~ .
No. Uil Ho1 S RS | 9 Of
1 0.0800 0.0225 0.0575 ~-1.075 0.242
5 -0.0865 0.1668 -0.2533 -1.075 --
6 0.1344 0 0.1344 - 0.572
10 -0.1626 0 -0.1626 -0.691 -
11 0.1661 0.0800 0.0861 - 0.366
15 -0.2144 -0.0865 -0.1279 -0.544 -—
16 0.1791 0.1344 0.0347 - 0.148
20 -0.2462 -0.1626 ~0.0836 -0.356 --
21 0.1760 0.1661 0.0099 - 0.042
25 -0.2631 ~0.2144 ~-0.0487 ~0.207 --
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Table 10. Stiffener stresses: Case 1 of test girder panel
G6-T1 at A = 0.26

~

Pt. ~

No. Vil Vo1 V17V Og ¢
1 0.1156 0.1215 -0.0059 -0.038 -
2 0.2129 0 0.2129 1.355 -
3 0.2993 0.1156 0.1837 1.170 -
4 0.3830 0.2129 0.1701 1.087 -
5 0.3188 0.2993 0.0195 0.124 -
21 1.2623 1.2636 -0.0013 - -0.0083
22 1.2617 1.2567 0.0050 - 0.0318
23 1.2538 1.2623 -0.0085 - -0.0541
24 1.2506 1.2617 -0.0111 —-— -0.0707
25 1.2576 1.2538 0.0038 - 0.0242

Table 11. In-plane stresses: Case 2 of test girder panel
G6-T1l at A = 0.26

Pt. ~T =T =T =T =T =T

No. Txy oM SyM1 um2 o1 92 Yielding
7 0.5525 0.9814 1.0779 1.1159 0.7614 -0.3462 yes
13 0.6280 1.0884 0.8765 1.3906 0.6491 -0.6070 yes

19 0.5269 0.9509 1.0617 1.1706 0.5589 -0.5391 yes
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1.1350

. Table 12, Flange stresses: Case 2 of test girder panel
G6-T1 at A = 0.26
Pe. i i 8,.-8 5 51
No. +1 -1 +1 -1 £ f
1 0.0760 -0.0249 0.1009 - 0.423
-0.0857 0.1345 -0.2202 -0.925 --
0.1296 0 0.1296 -- 0.544
10 -0.1571 0. -0.1571 -0.660 -
11 0.1602 0.0760 0.0842 - 0.354
15 -0.2045 -0.0857 -0.1188 -0.498 -
16 0.1727 0.1296 0.0428 - 0.180
20 -0.2334 -0.1571 -0.0763 -0.320 -—
21 0.1695 0.1602 0.0093 - 0.039
25 -0.2479 -0.2045 -0.0434 -0.182 -
Table 13. Stiffener stresses: Case 2 of test girder panel
G6-T1 at A = 0.26
Pt. A v v,.,~V 0 G!
No. +1 -1 +1 -1 s s
1 0.0601 0.0688 -0.0087 -0.055 -
2 0.1097 0 0.1097 0.690 -
3 0.1576 0.0601 0.0975 0.614 -
4 0.2069 0.1097 0.0972 0.612 -—
5 0.1748 '0.1576 0.0172 0.108 -
21 1.1420 1.1430 -0.0010 - -0.0063
22 1.1417 1.1367 0.0050 - 0.0315
23 1.1350 1.1420 -0.0070 - -0.0441
24 1.1323 1.1417 -0.0094 - -0.0592
25 1.1385 0.0035 - 0.0220
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stresses at the same load level. It is observed that the
entire portion of diagonal line Dy is yielded at A = 0.26.
Figure 45 shows the flange stress distribution and Figure
46 shows the stiffener stress distribution at A = 0.26.
Figure 47 shows a load-stiffener stress curve. Figure 48 shows
the deflectional shape of the webplate.
Basler's theory (2) The ultimate load is

computed to be 112 Kips. Thus, Aﬁ = 0.317.

Test girder panels G7-T1 through B-Q Similar compu-

tations are performed on these girder panels and the results
are presented in Table 14. Figure 49 shows a 1oad-61, 82
relationship of girder panel G7-Tl. Figures 50 and 51 show
the distributions of flange stresses and stiffener stresses,
respectively for girder panel F1l0-T2. Figure 52 illustrates
a deflectional surface of the same girder panel. Figures 53,
54 and 55 show relationships of load-principal stresses, 81

and G respectively, and Figures 56 and 57 show the distri-

2'
butions of the maximum and minimum principal stresses,
respectively, for girder panel B-Q. Figures 58 and 59
illustrate a total deflection surface and an in-plane dis-

placement configuration, respectively, for the same girder

panel,

Analysis of panels subjected to both bending moment and shear

Obviously, this case lies between two extreme cases, i.e.,

bending and shear cases. The load carrying capacity of a



Table 14.

Prediction of ultimate load for shear panels

ex

(o}
(6£‘] th MWen

Girder A A Mode of (u) A 8 8
wCx Failure ex Yw u u ex used
G6-T1 0.328 0.077 Diag. T. 0.376 0.005 0.125 0.26 0.317 =~0.667 -=0.667
0.005 0.100 0.26 0.317 =-0.667 =-0.667
G7-T1 0.389 0.105 Diag. T. 0.446 0.500 0.025 0.44 0.395 =-1.500 =1.500
0.500 0.025 0.45 0.395 -1.500 =0.500
0.005 0.100 0.36 0.395 =-=1.500 =-0.500
0.005 0.125 0.32 0.395 -1.500 ~0.500
F10-T2 0.371 0.159 Diag. T. 0.157 0.005 0.125 0.38 0.364 0.214 0.214
0.005 0.125 0.40 0.364 0.214 -0.500
0.500 0.125 0.40 0.364 0.214 0.214
F10-T3 0.382 0.185 Diag. T. 0.053 0.005 0.125 0.40 0.407 0.400 0.400
0.005 0.100 0.42 0.407 0.400 0.400
0.500 0.053 0.34 0.407 0.400 0.400
B-Q 0.282 0.022 Diag. T. 0.167 0.250 0.025 0.30 0.338 =1.167 -1.167
0.003 0.025 0.38 0.338 -1.167 -1.167
0.003 0.125 0.24 0.338 -1.167 -1.167
0.250 0.050 0.32 0.338 -=1.167 =0.500
0.250 0.1l67 0.12 0.338 =-1.167 =0.500
0.003 0.025 0.38 0.338 =1.167 -0.500
0.003 0.125 0.28 0.338 -1.167 -0.500

PET
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Figure 45. Flange stress distribution at A
Test girder G6-T1l: £=0.00222
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Figure 46. Stiffener étress distribution at A = 0.26

Test girder G6-Tl: £=0.00222
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computer
result
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{ | Oé
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Figure 47. Load-stiffener stress Gé curve

Test girder G6-T1
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I

Total deflection wT at A
Test girder panel G6-Tl:
£=0.00222 _

= 0.26
u=0.125;
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u=0.125

u=0.100
1u=0.125

B

computer result

simple pure
shear '
0,,0
1 ¢ L1772

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 49. Load-principal stresses, 51 and 62
Test girder panel G7-Tl: =0.005
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Figure 50. Flange stresses
Test girder panel F10-T2
¥=0.125; £=0.00222; 6=0.2135
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Figure 51. Stiffener stresses
Test girder panel F10-T2
p=0.125; £=0.00222; ©6=0.2135
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Figure 52. Total deflection surface at A=0.38
Test girder F10-T2: u=0.125;
£=0.00222; 6=0.2135
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Figure 53. Load-principal stresses, 51 and 62

Test girder B-Q
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Figure 54. Load-principal stresses, 61 and 62
Test girder B-Q
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Figure 55. Load-principal stresses §3,0,
Test girder B-Q
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T HHIWT

Figure 56. Maximum principal stress distribution &, at
A=0.28 Test girder B-Q: pu=0.125; £=0.3025

L

Figure 57. Minimum principal stress distribution &, at
A=0.28 Test girder B-Q: u=0.125; £=0.0025
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Figure 58. Total deflection surface
Test girder B-Q: p=0.125;z=0.0025
A=0.28
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Figure 59. In-plane deformation u, v
Test girder B-Q: p=0.025; r=0.25; 6=-0.5
A=0.32 :
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bending panel is governed by the strength of the compression
flange; while that of a shear panel is governed mainly by the
strength of the webplate. In panels subjected to both bending
and shear, past experiments show that failure is attained

when a portion of webplate in the direction of diagonal tension
has yielded, although this failure is not as obvious as in case
of shear.

The prediction of the ultimate load in the combined case
using the result of the proposed analysis consists of finding
the load at which a certain region has yielded. It is seen
that the mode of failure is not defined as clearly as for
either bending or shear case. This is due to the nature of
combination of two extreme cases.

Test girder panel G8-T1 The experimental ultimate lcad

is 170 Kips. Thus, AS™= 0.226. The failure mode is the

yielding of the diagonal line D, . Assuming that the webplate

is simply supported along four boundaries, chr = 0.110. 'The

value of 6 is 0.0.

Computer result: Case 1 The maximum

residual stress is assumed to be 0.5% of the yield strength
of the webplate; while, the maximum total initial deflection
is assumed to be 50% of the thickness of the webplate. Then,

a = 0.000000708; ¢z = 0.000555; p = 0.125; 8 = 0.0

Table 15 shows the in-plane stresses at A=0.300. Diagonal
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line Dy is not completely yielded yet at this load level.
Points 1 and 6 are yielded at this load level.

Computer result: Case 2 The maximum

residual stress is assumed to be 0.5% of the yield strength
of the webplate; while, the maximum total initial deflection
'is assumed to be 80% of the thickness of the webplate. Then,

a = 0.000000708; < = 0.000555; u = 0.200; ©6 = 0.0

-Table 16 shows the in-plane stresses at A = 0.24. Diagonal

line D, is not completely yielded yet at this load level.

1

A load-v curve, an in-plane displacement configuration,
and a deflectional shape of the webplate all at A = 0.26 are
shown in Figures 60 through 62, respectively.

Test girder panel G9-T1 and F10-Tl Similar compu-

tations are performed on these girder panels and the results
are presented in Table 17. Figure 63 shows a load-v relation-

ship for girder panel G9-Tl.
Remakrs on the Feasibility of the Proposed Analysis

Since the solution of von Kdrmdn's nonlinear partial
differential equations is mainly based on the polynomial series
and finite difference methods, it is necessary to show that the
use of the polynomial series as well as the selection of 5 x 5
mesh point system for finite differences result in reasonably

good accuracy. The result of a study on the convergence of
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Table 15. In-plane stresses: Case 1 of test girder .panel
G8-T1 at A=0.300

Pt. ~T =T ~T ~T ~T ~T

No. Txy M oMl Tym2 91 92 Yielding
7 0.4195 0.8190 0.8806 0.9776 0.6606 -0.2558 -

13 0.4608 0.7982 0.7213 0.9512 0.4657 -0.4560 -

19 0.3560 0.6305 0.6704 0.6963 0.3228 -0.4037 --
a 0.1632 0.9966 1.0101 0.9849 1.0942 0.2385 yes
5 0.0767 0.9265 0.9384 0.9193 -0.2522 -1,0265 -
a 0.3256 0.9647 1.1442 0.9805 0.9005 -0.1177 yes

@points not on Diagonal line D, .

Table 16. In-plane stresses: Case 2 of test girder panel
G8-T1 at A=0.24

Pt. ~T T T ~T T ~T
No. Txy oM 9yMm1 ym2 91 92 Yielding
7 0.3636 0.7111 0.9650 1.0734 0.5776 -0.2166 yes
13 0.4454 0.7721 0.6748 1.0263 0.4495 -0.4421 yes
19 0.3185 0.5608 0.6566 0.7084 0.2776 -0.3678 —-

a8 0.2729 0.9945 1.0302 0.9627 1.0636 0.1567 yes
62  0.2557 0.8145 1.2003 0.9794 0.7686 -0.0851 yes

" 2points not on Diagonal line Dl'



Table 17. Prediction of ultimate load for panels both in bending and shear
ex ‘ (Or ) th
Girder A A Mode of (w) —_— (w) A 0
u wCr Failure ex G th th u
G8-T1 0.226 0.110 Diag. T. 0.355 0.005 0.125 0.30
0.005 0.200 0.24
0.500 0.025 0.34
G9-T1 ~0.165 0.040 Diag. T. 0.286 0.005 0.125 0.20
0.005 0.150 0.18 .
F10-T1 0,342 0.120 Diag. T. 0.108 0.005 0.125 0.32 0.747
0.500 0.125 0.26 0.747
0.500 0.108 0.747

0.26
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Load ’ A=E__
Yw

computer result

. _D--—O— experimental

Figure 60. Load-vertical displacement, v curve
Test girder G8-Tl: £=0.000555



Figure 61.

In-plane displacement configuration
Test girder G8-Tl: u=0,1250; z=0.000555
A=0.24

(AN
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Load A='6_':'t-"
Yw

u=0.125

u=0.150

computer result
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Figure 63. Load-vertical displacement, v curve
Test girder G9-Tl: £=0.000555
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the finite differences which is presented in Appendix B, shows
that the 5 x 5 mesh point-system gives sufficiently good con-
vergence to the problems considered in this study.

Except for this, an analytical study of accufacy, how-
ever, is quite difficult because of the nonlinear nature of
the problem. The only other way to establish the degree of
accuracy would be by comparing computed results with available
experimental results. |

It is found through this study that the initial deflection
and the initial in-plane stresses are the least known parameters
among many parémeters considered. The accuracy of the measure-
ments of initial deflection, first of all, may be questioned.
Besides, the initial in-plane stresses were not actually
measured in any of the tests cited. Information on both of
these parameters are needed in the proposed theoretical analysis.
Thus, it is impossible to evaluate the accuracy of the method
used in a quantitative manner. A discussion or accuracy from a
qualitative viewpoint is given in the following based on the
general correlation of the computed theoretical results with
experimental data and with other theories. Various values of
initial deflection and initial in-plane stresses are assumed
for theoretical computation.

The load-8x reiationships presented in Figures 27 through
30 indicate that in general good correlgtions exist between

t
the proposed theory and the experimental results. The 1oad-6f



156

relationships presented in Figures 26, 31 and 34 and a load—Ef
relationship presented in Figure 43 also indicate the same
trend. Also, the deflectional shapes of webplates obtained by
the proposed analysis are found to be governed by 2nd and 3rd
order terms. The fact that these shapes are quite reasonable
compared to the experimentally observed shapes suggests that
the higher order terms are behaving properly. These good
correlations indicate that the use of the polynomial series,
as well as the use of the 5 x 5 mesh point system for finite
differences are in general acceptable.

It is unfortunate that most available and most reliable
test data is the ultimate load capacity. Since the proposed
theory does not take into consideration the inelastic behavior,
the direct correlation of theory and experiment using the
ultimate load is impossible. However, advantage is taken of
this fact in developing a means to predict ultimate strength
using the proposed elastic theory. This is discussed in a
later subsection.

Discussions on the Behavioral Results Obtained
from the Numerical Computations

In bending case

Deflection surfaces shown in Figures 32, 33 and 41
indicate a fact that the deflection of webplate in the com-

pression zone is more pronounced than that in the tension zone.
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It is seen from these deflection surfaces, that the plate
bending stress in this compression zone is quite significant.
In-plane displacement configurations show typical
cylindrical bending deformation of beam such as the one shown
in Figure 42. It is seen that the upper flange undergoes
compression and the lower flange undergoes elongation.
Furthermore, it is interesting to note that the points which
are on a vertical line before loading remain also on the same
line with a slope, and that the mesh lines which intersect
orthogonally before loading remain orthogonal after loading.
Distributions of 3# in general are such that they are
almost linear in the tension zone and fairly curved in the
compression zone in the webplafe as is shown in Figure 39.
Also, it is seen that the plate bending stresses 0.1 and 0o
are more significant in'the compression zone. It may be
explained that the reduction of 5% in the compression zone is
caused by the significant deflection of webplate in this 2zone.
Load-average flange stress O¢ relationships in Figure 26,

31 and 34, and load-average €. relationship in Figure 43 show

f
that these are approximately linear. Furthermore, these
relationships are found not significantly affected by the
initial deflection. This is thought as guite reasonable,
because flanges are tightly connected with the webplate so that

the webplate deflection is small near the joints of the flanges

and the webplate.
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Load—6X relationships shown in Figures 27, 28, 29, 30, 35,
36, 37, 38 and 44 indicate in general that the portion of a
webplate in the compression zone does not carry as much load
as that in the tension 2zone does. In Figure 27, several
computer solutions with different magnitudes of initial de-
flections and initial stresses all coincide approximately with
the experimental values. The main reason is thought to be that
the plate buckling load for this girder, Gl-Tl, is very close
to the ultimate load so that the deflection of the webplate is
not significantly large. In general, it could be observed
that the larger the initial deflection is, the smaller 6x
becomes in the compression zone.

Figure D.l in Appendix D, and Figure 40 show P—ebx
diagrams in test girder panel A-M. In Figure D.1l, both the
2nd and the 3rd order approximations are shown for comparison.
It may be seen that the 3rd order approximation is in better
agreement with the experimental results with regard to the
magnitude of €px and the general trend.

The values of AiX/chr varies from nearly 1 to 8 in the
test girders cited indicating the existence of a significant
post-buckling range.

In shear case

Deflection surfaces shown in Figures 48, 52 and 58
indicate outstanding oblique rise in the direction of Diagonal
Dl; furthermore, the deflection surfaces are of typical three

half-waves peculiar to the shear problem.
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In-plane displacement configurations show typical shearing
deformation of beam as is illustrated in Figure 59. This
figure is seen to be completely different from a bending de-
formation shown in Figure 42.

Figures 56 and 57 show the distributions of’principal
stresses 51 and 62. The existence of the diagonal tension
field may be seen from these figures together with Figure 58.
1’ 52

55 show a general trend that the maximum principal stress

Load-g relationships shown in Figures 49, 53, 54 and
tends to increase rapidly with load, while the minimum
principal stress tends to creep with load. This trend is very
prominent when the magnitude of initial deflection is large.

Figures 45, 46, 50 and 51 illustrate boundary stress
distributions, of which Figures 45 and 50 show the effect of
beam bending on the flange stress Ogs and Figures 46 and 51
show the stiffener stresses. The accuracy of the computed
stiffener stress is not as good as the in-plane stresses or
the plate bending stress as shown in Figure 47.  However, the
same figure indicates the trend of load-stiffener stress
relationship is fairly well represented.

The values oif Aix/chr varies from nearly 2 to 10

indicating the existence of a significant post-buckling range.

Combined case

An in-plane displacement configuration is shown in

Figure 61. It is noted that this panel has large curvature
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near the left edge and has little curvature near the right
edge. This configuration is more or less the combination of
the configurations illustrated by Figures 42 and 59.

Figure 60 shows computed and experimental load-v relation-
ship. The trend of these curves coincideswith that indicated
in Figure 6. Figure 63 shows a relationship similar to
Figure 60; however, in this case the relationship is almost
linear for the range of A from 0 through 0.14.

A deflectional surface is shown in Figure 62. It is seen
that this surface is similar to those shown in Figures 48, 52
and 58.

The values of Aix/Aw varies from nearly 2 to 4

Ccr

indicating the existence of a significant post-buckling range.
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Some Discussion on Effect of Parameters

The main parameters involved in the proposed analysis are
presented in Chapter Two. Furthermore, parameters for the
tested girder panels cited in this dissertation are listed in
Table 2. Since the number of parameters involved is con-
siderably large, study of all parameters leads to an enormous
task. For this reason, and because of the lack of reliable
information on initial deflection and residual stress, the
effect of these parameters are studied. The effect of flange

rigidity is also studied to some extent.

Range of parameters in the test girder panels

The maximum value and the minimum value of each parameter
for the girder panels cited are indicated as follows:

1. Aspect ratio, A: 0.33 - 1.000,

2. Slenderness ratio, B: 200 - 1145,

3. Rigidity parameters

¢f: 0.305 - 1.140

¢f: 0.303 - 1.036
95t 0.081 - 0.710
¢L: 0.081 - 0.710

Ve 6.08 - 1536.0

Yi: 6.08 - 191.9
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b : 0.474 - 78.9
bo: 0.474 - 78.9

Kes 0.000068 - 0.0669

K%: 0.000037 - 0.0020

Effect of initial deflection

Theoretical determination of the initial deflectional
pattern is very difficult because many factors are involved in
a sophisticated manner. Previous experiments have shown that
the initial deflectional patterns are quite complex and, to
some extent arbitrary. Figures 64 and 65 present sketches of
the initial deflectional patterns for the test girder panels
cited. It is seen that these patterns are quite complex and
by no means systematic. Furthermore, in some experiments the
test girders were repaired after previous tests. In these
cases, the initial deflection patterns depend on the loading
history (S5).

In all of the computations presented in this thesis,
however, the initial deflectional pattern is assumed to be of
a cosine wave shape as described by Equation 55. There are two
main reasons for this assumption: First, previous experimental
results indicate a fact that the most common initial deflecr
tional shape is of one half wave in both x- and y-directions

as seen from Figures 64 and 65. Secondly, flanges and
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(A-Q) A-M (A-Q')
B-Q (B-M) (B-Q")
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Figure 64. Sketches of total initial deflections for

Japanese test girder panels
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G1-T1 G2-T1 G3-Tl

G4-T1 G5-T1 G6-T1

G7-T1 F10-T1 F10-T2

Figure 65. Sketches of total initial deflections for
Lehigh test girder panels
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stiffeners can be considered not to deform significantly before
loads are applied. By virtue of Equation 55, flanges and
stiffeners have zero initial deflectional slopes.

It has been assumed in the proposed analysis that the
total initial deflection, W consists of the initial elastic

L (0)

deflection, , and the residual deflection of unknown

nature. The solutions of the zero order equations indicate
that the ratio of the initial elastic deflection, w(o), to the
total initial deflection, W is approximately 0.3 for ordinary
plate girder panels when the maximum initial stress, T is
one-half of the yield strength of webplate, Ovu®
The solutions of the higher order equations indicate that
when the total initial deflection is 50% of the thickness of
the webplate, the ratio of the bending stress component to the
in-plane stress component at a point on the webplate can be as
high as 40%. It is also found that the larger the initial
deflections are, the larger the total deflections become, and
that the in-plane displacement components u and v are not as

significantly affected as deflection w is by the magnitude of

the initial deflection.

Effect of initial in-plane stresses

In -the proposed analysis; the distribution of the initial
in-plane stresses, or residual stresses, has been determined

by modifying that developed by $kaloud and Donea (25). Basler
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and others assume that the maximum residual stress, Or, is
approximately 50% of the yielding strength of steel (4,6).
References 10 and 26 suggest that this percentage be lowered
for high strength steel. In particular, Reference 28 assumes
this percentage to be 50% for ordinary carbon steel and 25%
for high strength steel.

The result of the analysis shows that larger residual
stresses result in smaller yielding loads as expected. 1In
bending problem, the magnitude of 0. is found to be very sig-
nificant with regard to the load at which a panel starts
yielding. On the other hand, in shear problem, the maximum
residual stress 0. is found to have less significant effect
with regard ‘o the yielding load. gkaloud and Donea concluded
in Reference 25 that the residual stresses, generally harmful,
may in some cases, represent a real prestressing of webplates
subjected to shear. This seems to agree with the statement

just mentioned above.

Effect of flange rigidities

In order to see the effect of rigidities of flanges, a
cover plate of 22 cm x 0.6 cm is assumed to be welded on top
of both upper and lower flanges of test girder panel A-M.
The rigidity parameters become larger than before and are

given as follows:
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0.778; ¢/

0.778,

©-
+h
it

Ye = 23.7; YL = 23.7,

Ke = 0.008; «k; 0.008.

The result of analysis shows that the ultimate load, Azh, is

now 0.95 compared with 0.69 obtained previously. Therefore,
the ultimate load is considerably improved by reinforcing
flanges as can be expected. Since the buckling load of web-
plate remains essentially the same, larger ultimate load
implies larger postbuckling strength.

Next, a shear girder panel is considered. Girder panel
F10-T3 is chosen fbr this purpose. First, the thickness of

the flanges is doubled. Then,

. . = . '
¢f 2.074; ¢% 2.073; wf 699.2; wf 699.2

K

0.0160; « 0.0160.

1]
£ £

The analytical result shows that the ultimate load, AEh, is

now 0.42 compared with 0.40 obtained previously. Secondly,

the thickness of the flanges is quadrupled. Then,

bg 4.148; o = 4.144; Ve = 5593.6; w% = 5593.6

f

0.1280; = 0.1280.

~
th
ll

“f
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However, the analytical result shows that Aﬁh is still 0.42.
This implies that excessive reinforcement on flanges does not
lead to significant improvement on the load carrying capacity
of girder panels in shear. 1In this respect, it is found that
the flanges in the shear panels behave quite differently

from flanges in the bending panels.
Prediction of Ultimate Load by the Proposed Analysis

A good correlation is found in the prediction of the
ultimate load between the results from the proposed analysis
and the experimental results when éhe maximum total initial
deflection is assumed to be 10% of the thickness of webplate
in the bending problem and 50% of the same in the shear
problem, respectively, while initial in-plane stress is
assumed to be negligibly small. It is also found that use
of these assumed parameters results in good prediction of the
post-buckling behavior. Table 18 shows the ultimate loads
for the tested girder panels cited when the initial deflections
and initial in-plane stresses are assumed as mentioned above.
No similar correlation is given in the combined loading cases

because of insufficient data.



Table 18. Prediction of ultimate load

Gérdei Type of Exp.eioad Baslgr's Progﬁsed
ane Loading Au Au Au
Gl-T1 Moment 0.242 0.218 0.210
G2-T1 ‘ Moment 0.378 0.394 0.400
G3-T1 Moment 0.381 0.370 0.420
G4-T1 Moment 0.563 0.562 1 0.610
G5-T1 Moment 0.495 0.479 0.680
A-M " Moment 0.640 0.629 0.690
C-M Moment 0.555 0.464 0.555
G6-T1 Shear 0.328 0.317 0.260
G7-T1 Shear 0.389 0.395 0.360
F10-T2 Shear 0.371 0.364 0.380
F10-T3 Shear 0.382 0.407 0.400

B-Q Shear 0.282 0.338 0.280
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Ath Initia} Residual Theoretical
-5 Deflection Stress Failure

Ba H 0/ O Mode

0.87 0.025 0.005 Torsional B.
1.06 0.025 0.005 Lateral B.
1.10 0.025 0.005 Lateral B.
1.08 0.925 0.005 Lateral B.
1.37 0.025 0.005 Lateral B.
1.08 0.025 0.005 Torsional B.
1.00 0.025 0.003 Torsional B.
0.79 0.125 0.005 Diag. Tens.
0.93 0.125 0.005 Diag. Tens.
1.02 0.125 0.005 Diag. Tens.
1.05 '0.125 0.005 Diag. Tens.
0.99 0.125 0.003 Diag. Tens.
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CHAPTER FOUR: SUMMARY AND CONCLUSIONS
Summary

A theoretical approach to the postbuckling problem of
plate girder webplates is proposed and presented in this
dissertation.

The purpose of the study is described and its signifi-
cance in the light of past investigations is explained in
Chapter One.

The basic concept, assumptions and the detailed method
of approach to the problem are described in Chapter Two. The
main feature of the proposed analysis is the use of a method
similar to perturbation method as well as the finite difference
method in solving a set of von Karmdn's nonlinear partial
differential equations.

A number of tested plate girder panels are reviewed and
the comparison is made between the results from the proposed
analysis and the experimental results in Chapter Three. Based
on this comparison, the accuracy of the proposed analysis as
well as the effect of parameters such as initial deflection,
residual stresses and flange rigidities, are studied. To
conclude the Chapter, prediction of the postbuckling behavior
and the ultimate strength by means of the proposed analysis

is discussed.
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Conclusions

Fzirly good agreement is found between the proposed
theoretical analysis and the experiﬁental results cited. This
proves the validity and general accuracy of the proposed
analysis. The mechanical model considered herein proves to be
é satisfactorily good representation of the actual girder
panels. The method of approach, especially the use of a
perturbation method and a finite difference method, proves to
be quite applicable.

Following conclusions are drawn based on the analysis of
computed results presented in Chapter Three.

1. The larger the initial deflection is, the larger the
final deflection becomes. The in-plane displacement components,
however, are not.significantly affected by the initial
deflection.

2. Larger initial deflection causes more curved load-
displacement and load-stress relationships.

3. The pattern of the initial deflection does not
necessarily cause a similar deflectional shape in the webplate
due to 1load.

4. Larger boundary rigidity léads, in general, to more
stable behavior of the panel in the post-buckling rangé.
However, excessive reinforcement of the boundary members does

not prove to be beneficial in the case of shear problem.
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5. The larger the yield strength of the steel is, the
larger the post-buckling strength becomes.

6. The ultimate load carrying capacity of a bending
panel is controlled by torsional buckling of the compression
flange, or lateral buckling.

7. The ultimate load carrying capacity of a shear panel
is controlled mainly by the yield strength of webplate. The
mode of failure is the formation of diagonal tension field.

8. The ultimate load carrying capacity of a panel in
shear and bending combined is controlled by the yielding in
the diagonal tension action rather than lateral or torsional
buckling.

9. The larger the residual stresses are, the sooner the
webplate initiates yielding.

10. Good prediction of ultimate loads and post-buckling
behavior of girder panels can be obtained by the proposed
theory using the following values for the initial deflection

and the residual stresses:

Maximum residual stress, 0.t negligibly small=0.005 Ovw
or less

Maximum total initial deflection, Yomax®

0.1 h for bending panels

0.5 h for shear panels.
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Recommendation for Future Study

The proposed method of analysis limits itself to elastic
behavioral study of plate girder panels. This restriction
makes the prediction of the true load carrying capacity in-
cbmplete, since in most cases, the behavior of plate girder
panels is elasto-plastic after certain loading levels.

Among parameters influencing the behavior of girder
panels, two parameters deserve more extensive study. One is
the initial residual stress distribution, and the other the
initial deflection. 1In future experimental work, the more
detailed study of these two parameters is highly recommended.

In summary, the following items are recommended for
future work:

1. Elasto-plastic analysis making use of the plasticity
laws and the large deflection theory of plates,

2. Investigation of initial stress due to welding in
terms of its magnitude and distribution, and its effect on
the post-~buckling behavior of girder panelé,

3. Investigation of initial deflection in terms of its
causes, distribution shapes and magnitude as well as its

effect on the post-buckling behavior of girder panels.
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APPENDIX A: CRITERIA FOR BUCKLING
Vertical Buckling of Flange

When a plate girder is bent, the deflectional curvature
gives rise to transverse flange force components. As a
result, a uniform compressive stress acts on the upper and
lower edge of the webplate through the flanges. Therefore,
it is possible for this compressive stress to cause the web-
plate to buckle just like a column. It has been found (4)
that if the webplate has a slenderness ratio B' less than the

following value:

2 A
B, =/ L — ¢ Gle = 0.673 E dTA' 1 ,  (a.1)
24 (1-v?) P 9ffs £ Oyg(0ygto)

g

then, it is safe against the vertical buckling of flange.
Lateral Buckling of Girder

When a plate girder is subiected to bending, this mode
of failure sometimes governs the strength of the girder. The
!mode of failure is such that the whole cross section of the
girder rotates about the axis of the' tension flange. A
typical buckling curve is shown in Figure A.l (4). This
curve is based on the maximum value of residual stress Op =

0.5 0 Curve I is a transition curve from an Euler's

YE£°
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Curve I

Curve II

Figure A.l1. Lateral buckling curve
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buckling curve and reflects the significant effect of residual
stress. Curve II is the Euler's buckling curve.  For this

case of maximum residual stress 0.=0.50 the buckling

Yf’
stress is obtained by Basler (4) as follows:

L
o
Lro - —% v2 for 0 < y < Yp = V2
Ovf
- 1 for y > Yp = V2
.YZ
where (A.2)
" .€_¥=£/_6.ﬁ.f__f_f‘ﬂ.€'
r T2 - 6If Y

However, for some different value of the maximum residual
stress, Opr @ different transition curve should be used. It
is reasonable to assume this transition curve in the following

general form (14).

O'L o
-1 - —= (" (A.3)
Ovs 9% ¢ Yp

The term on the left assumes a value of 1.0 when y = 0, and

1.0 - or/c when vy = y_. It is required that the Euler's

vf p
curve and the transition curve intersect and their tangents
be the same at y = Yp' From these two conditions, the power

index n and the parameter Yp are determined as follows (14):
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= 1 , and

V1.0 - or/oYf

Yp

n=2 (0ye/0_ - 1) (A.4)

Torsional Buckling of Compression Flange

This failure is also one of the typical failures in plate
girders subjected to bending moment. The compression flange
by itself buckles as a plate in this failure. Similar to the
case of lateral buckling, the buckling stress can be obtained

as follows (14):

T
o] o] Y=Y n
== =1-—= (—) for y_<y<y
[e) g Y=Y °© P
Yf YE p '©
= 1/y? for y>v,
where
c 12(1-v%)e
Y = = Y (A.5)
£ m2K v

with the value of K suggested to be taken as 0.425 (4). It is
required that the Euler's curve and the transition curve
intersect and their tangents be the same at y = Yp' From these

conditions, yp and n are determined as follows (14):
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Y, = 1//I0-6,/6,; , and
Yo T Yo
n=2 —E-—z—' . (A.6)
-1 ’
Yp(Yp )

It is suggested that the value of Yo be taken aé 0.46 (4).
Figure A.2 provides a typical torsional buckling curve.
Curve II is the Euler's buckling curve, and Curve I.is the
*ransition curve.
In order that the torsional buckling precedes the lateral
buckling of girder the following inequality should be satisfied

(4):

P

' 1 "k
2Bf>12+-2--c—f—
where Bf = cf/tf
2. = lateral buckling length (A.7)
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Figure A.2.
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Torsional buckling curve
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APPENDIX B: CONVERGENCE CHECK WITH RESPECT TO

DIMENSION OF MESH POINT SYSTEM
Choice of 5 x 5 Mesh Point System

The computer program developed in this study is generally
applicable for any dimension of mesh point system, N. 1In
Chapter Three, the computations are based on 5 x 5 mesh point
system. In this appendix, it is shown that the choice of
N = 5 is a good representation of the mechanical model used
in the study. It is true that the larger the value of N, the
more accurate the solutions get. On the other hand, the
Qalue of N should be determined so that the solution yields
reasonably gcod accuracy and yet does not require excessive
computer time.

The convergence for the zero order equation is studied
first. This is followed by the éonvergence study for the

higher order equations.

Zero order equation

Equation 52 is solved repeatedly by varying the value of

N. The parameters used for this purpose are as follows:

0.000667; ¢ = 0.5; u=0.67; A= 1.0; B = 266.7

[*]
I

Ye = 21.3; yL = 21.3; ¢ = 10.8; Y. = 10.8

The result of the convergence study is presented in Figure B.l.

Judging from the convergence curve, the true value for the
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(0)

maximum w would be 0.299 by observation. The convergence
is obtained in the following manner:

N 4 5 6 7 8 9 10 11

., (0)

max 0.167 0.436 0.284 0.345 0.286 0.315 0.286 0.301

wég;/.299 0.559 1.460 0.950 1.155 0.957 1.055 0.957 1.008

Therefore, the use of the 5 x 5 mesh point system overestimates
the true solution by 46% error. The use of thev7 x 7 mesh
point system overestimates the true solution by 15.5% error.
Although the zero order approximation yields 46% of error on

(0)

the 5 x 5 mesh point system, the solution w , however,
affects only the zero order plate bending stress components.
The contribution of the 2zero order plate bending stress com-

ponents is less than 10% of the total plate bending stresses.

Higher order equations

The convergence check is done for Girder A-M, a girder
in bending; and for Girder B-Q, a girder in shear.

Girder A-M in bending The parameters used are as

follows:

o 0.00000667; g = 0.005; p = 0.167; A = 1.000

B = 267; ¢ = 0.533; ¢r = 0.533; ¢_ = 0.400; ¢l = 0.400

€
Hh
|

= 21.3; ¢£ = 21.3; ws 8.95; wé = 8.95; wé = 8.95
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Figure B.3. Load-¥ curve: Test girder panel A-M
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Figure B.4. Load-deflection curve: Test girder panel A-M
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values of N. It is found that the 4 x 4 mesh point system
is too coarse and the results are far off from those results
for N = 5. It is seen that the 5 x 5 mesh point system is a

fairly good representation.

Girder B-Q in shear The parameters used are as

follows:

0.00000595; C.= 0.0025; u = 0.,025; © = 0.1667

eJ
It

A=1.00; B = 266.7; ¢f = 0.533; ¢!

£ 0.533; ¢s = 0.400

bs

0.400; wf = 21.3; ¢% = 21.3; ws = 8.95; wé = 8.95

= 0.00026; K% = 0.00026

KE
Figure B.5 shows the convergence of the von Mises comparison
i} and ¢

stresses, 6V It is seen that 6vM converges

M’ “vMl vM2°©
very rapidly. Figure B.é and Figure B.7 show the convergence
for the in~-plane displacement component, v. Figure B.7 shows
that the 5 x 5 mesh point system is a good representation.
Figure B.8 shows the convergence of the deflection, w. Results
for N=4 and N=6 are not presented because of the fact that the

central point is not included in these mesh point systems.

Fairly good convergence is observed.
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Figure B.5. Convergence of von Mises stresses, 6vM'
Sle and Gsz at the center of the

webplate Loading: shear
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Figure B.7.

Convergence curve for v
Test girder B-Q at A=0.30
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Figure B.8. Convergence for deflection w at the center
of webplate Loading: shear
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APPENDIX C: COMPUTER PROGRAMS
General Remarks

The computer programs used in this gtudy consist of a
main program and 12 subroutine subprograms. The computer
program flow chart is shown in Figure C.l. The subroutine
subprograms are shown in capitalized letters in this figure,
except for UGELG, which is a library subroutine subprogram
for solving a set of simultaneous equations by means of
Gauss Reduction ﬁethod, each program is explained in the

following.

Main program

This program serves as a medium by which subroutine
subprograms are organized and input-output jobs carried out.
It calls UGELG four times to solve sets of simultaneous
algebraic equations.

Input The input data consists of four cards and
includes the following quantities:

1. First card:

ALPH (o); ZETA (z); AM (u); AN (v); TH (8); AL (A);
BET (8),
2. Second card:

FF (¢f); FF1l (¢£); FS (¢s): FS1 (¢é),
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Start

Read Input

I

Solve Zero Order
Equation

/}

E

Solve lst Order
Equation

—

Evaluation of
Const. and Stresses

Solve 2nd Order
Equation

Evaluation of

MEQE EQUIL

Stresses

&

Print Output

Const. and Stresses‘!
&£ 0
Solve 3rd Order ‘ -
L\\\ Eguation BENDS
Evaluation of A

Library Subroutine Subprogram

Solution of simultaneous
equations by Gauss Reduction
Method

Figure C.l. Computer program flow chart
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3. Third card:
PF (Yp); PFL (Yg): PS (Y )i PS1 (Yl)i AKF (kg);
AKF1l (Ké),'
4. Fourth card:
N; LEVEL; AMINL; ILD; TNLD; KMAX,
where N = Dimension of mesh point system
LEVEL = Number oflload levels
AMINL = Minimum load level, also used as load increment

ILD = Index showing the type of loading: 1 for shear

or combined case, 2 for bending case

INLD Index for the initial load level, usually 1

KMAX = Maximum order of approximation, usually 4
Output The output has been explained in Chapter Three.

Subroutine CMAIN

This program is a continuation of the main program and
serves to evaluate derivatives for 2nd and 3rd order constants
of simultaneous equations and to evaluate stresses along

boundaries excluding those at corner points.

Subroutine CCMAI

This is also a continuation of the main program and
serves in the same way as CMAIN except that this is for corner

points.
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Subroutine HMEQE

This forms matrix elements of simultaneous equations for

the higher order equations of equilibrium.

Subroutine BRCND'

This forms matrix elements of simultaneous equations for

the higher order boundary conditions.

Subroutine ZEROS

This solve zero order equations.

Subroutine RSTRS

This program is for the evaluation of residual stress

components.

Subroutine STRS

This program is for the evaluation of the in-plane stress

components.

Subroutine BENDS

This program is for the evaluation of the bending stress

components.

Subroutine EQUIL

This program is for the formation of linear operators for

the equations of equilibrium for higher orders.
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Subroutine EVCST

This program is for the detailed evaluation of constants

of simultaneous equations for higher orders.

Subroutine SINIT

This program is for the initialization of constants and

stresses.,.

Subroutine CSRNS

This program serves as a coordinator between SINIT, EVCST,

STRS and BENDS.
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APPENDIX D: DISCUSSIONS ON THE EXPANSION OF DISPLACEMENT

COMPONENTS IN TERMS OF AN ARBITRARY PARAMETER
Discussions

In this thesis, the unknown displacement components u, v
aml w are assumed to have the form of power series of order
three as shown by Equation 22. Consequently, the in-plane
stress components and the plate bending stress components
are also expressed in the form of power series of order three.

If u(3), v(3> and w(3)

are not considered as Equation 41 shows,
then the expressions of stresses should include no third
power, either.

In this section, the significance of the third order power
terms are investigated by comparing two approximations, the
second and the third approximations. The second approximation
considers the terms only up to the second powers; on the other
hand, the third approximation also takes into account the
third powers. The contribution of each term is evéluated as
follows:

Suppose, Ei is to be considered. Then from Equations 1
and 23,

5T —=(1)

- —(2) —(3)
=0 + 0y A+ O A2 4+ O A®.

X

The contribution of the k-th power (k = 1,2,3) is evaluated by

the following quantity:
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—(k k —(1 —(2 o
156 o /[ lo 0+ 158 a) + 1582 az) 4 |58Y m] :

For all three types of loading considered in this thesis,
the following results are found to be true:

1. The contribution of the 3rd power terms in the in-
‘plane displacement components u and v is usually less than 10%
of the total of the 1lst through the 3rd power terms.

2. The contribution of the 3rd power term in the
deflection w can be sometimes as high as 30% of the total
deflection wT. Furthermore, the 2nd power term of w is
usually the greatest for webplates with relatively long post-
buckling range and zero power term is the greatest for web-
plates with large initial deflection and relatively short range
of post-buckling.

3. The contribution of the 3rd power terms in the in-
plane stress components 5%, EY and ?ﬁy is usually small, say,
less than 5% of the total of zero through the 3rd power terms.
Furthermore, the lst power terms are usually greater than the
2nd and 3rd power terms.

4. The contribution of the 3rd power terms in the plate
bending stress components ¢

o and T is approximately

bx’ “by bxy
in the same order of the lst and 2nd power terms. By retaining
these 3rd power terms better agreement with the experimental

results can be obtained. Figure D.l shows a comparison between

the 2nd and the 3rd order approximations for test girder A-M.
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It is seen that the 3rd order approximation is in better
agreement with the experimental results. Similar remarks can

be made with the other test girders cited in this thesis.
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P, ton

Experimental

3rd Approximation

2nd Approximation

19
£ = 0.125
L= 0.167 10
] 1
\r
~1000 x 10°° -500 x 10°°

Figure D.1.

P - ey relationship: Test girder A-M

2nd and 3rd order approximations
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